• Title/Summary/Keyword: external fire

Search Result 324, Processing Time 0.022 seconds

A Study on the Modeling of Vertical Spread Fire of Exterior Panel by Fire Dynamic Simulation (FDS) (FDS를 이용한 외장재의 수직 확산 화재의 모델링에 관한 연구)

  • Min, Seh-Hong;Yoon, Jung-En
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • Considering heat insulation and beautiful sight of construction, making use of exterior panels is increasing. Recently the exterior panels now are weak very much, and so in consequence of the weakness fire spreads rapidly. Compared with internal fire, external vertical fire spread rate goes rapidly and it is extensive in spread range, therefore it is dangerous very much. Accordingly, under present condition of poor standard of exterior panels, it is required to take measure to meet the appropriate situation. In this study, by making use of FDS(Fire Dynamic Simulation) program about external vertical fire of high rise building, fire behavior is searched by computer. It is important that realizing by computer fire modeling about external vertical fire must be included certainly in procedure of fire performance design in the future. In modeling program, FDS version 5 is available, and aluminium composite panel is applied in external panels. In this study, for realizing of actual fire condition, FDS is applied by details of fire scenarios considering influence of wind.

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

Improving Flexibility of External Data Exchange in Count-fire Operation System by Adapting Dynamic Parser Software (동적 구문처리기 소프트웨어 적용을 통한 대화력전 수행체계 연동의 유연성 향상 방안)

  • Hong, Won-Eui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • The counter-fire operation system performs its mission exchanging information with other related systems such as command & control systems and military information systems. In the process of exchanging information, the counter-fire operation system uses a type of data message which contains exchange data information in the format of KMTF. The requirement of data exchange of count-fire operation will continue to evolve. But the EDX(External Data eXchange) configuration item of the current counter-fire operation system can not effectively cope with the variation of data exchange requirements due to its fixed software structure. In the paper, a solution for improving flexibility of external data exchange in counter-fire operation system is proposed.

A Study on the Causal Analysis of Electrical Fire by Using Fuse (퓨즈를 이용한 전기화재의 원인분석에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2008
  • This paper studied on the causal analysis of electrical fire by using fuse that it is used with safety device in electrical products. The experimental samples used are glass tube fuse(15 A, $5{\times}20mm$) and temperature fuse(10 A, $72^{\circ}C$). The experiment analyzed on the characteristics of damaged fuse by main causes(short circuit, overload, external flame) of electrical fire. The results showed, in case of glass tube fuse identified different characteristics in external form and element surface and element texture of damaged fuse by main causes of electrical fire. In case of temperature fuse identified different characteristics in external form and sliding contact surface and sliding contact texture of damaged fuse only by external flame.

A new model for transient heat transfer model on external steel elements

  • Chica, J.A.;Morente, F.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.201-216
    • /
    • 2008
  • The Eurocode system provides limited information regarding the structural fire design of external steel structures. Eurocode 1 provides thermal action for external member but only in steady-state conditions. On the other hand, Eurocode 3 provides a methodology to determine heat transfer to external steelwork, but there is no distinction in cross section shapes and, in addition, the calculated temperature distribution is assumed to be uniform in the cross section. This paper presents the results of a research carried out to develop a new transient heat transfer model for external steel elements to improve the current approach of the Eurocodes. This research was carried out as part of the project EXFIRE "Development of design rules for the fire behaviour of external steel structures", funded by the European Research Programme of the Research Fund for Coal and Steel (RFCS).

An Experimental Study on Fire Risks Due to Overcharge and External Heat of ESS Lithium Battery (ESS 리튬배터리의 과충전 및 외부수열에 따른 화재위험성에 관한 실험적 연구)

  • Kim, Si-Kuk;Choi, Su-Gil;Jin, Se-Young;Bang, Suck-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.59-69
    • /
    • 2019
  • The present article relates to an experimental study on fire risks due to overcharge and external heat of ESS lithium battery. According to the experimental results of overcharge, ignition occurred as combustible gas and smoke was slowly increased after occurrence of venting, and an explosive combustion form accompanied by flame eruption and sparks was displayed as charged energy is rapidly discharged in an instant. On the other hand, according to the experimental results of external heat, as a tremendous amount of combustible gas and smoke was ignited following being discharged after occurrence of vent, the charged energy itself was rapidly reduced due to the discharged energy so that a passive combustion form was observed when compared with overcharge after occurrence of flames. According the analysis results of fire damage characteristics, differences between external heat (External flame) could be found through visual and X-ray inspections. Namely, while inside electrode plate was completely destroyed and perforation of the electrode plate was observed in the case of overcharge, fire damage of the electrode plate was not severe maintaining the form in the case of external heat.

Flame Characteristics of Surface Part of Composite Emulsion Exterior Finishes (복합 에멀젼 외장마감재 표면부의 화염 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.133-134
    • /
    • 2019
  • As part of recent low-energy policies, thermal insulation standards for buildings are being tightened every year. The importance of external insulation methods is increasing due to the strengthening of insulation standards. Among the main materials used in the external insulation method, dry bit material is a finishing material composed of an organic binder and aggregate. When the fire occurs, the ignition of the surface part causes a direct fire on the thermal insulation material at the rear side when heat energy is concentrated. Therefore, it is important that the finishing material in dry insulation using a dry bit has a low fire spreading property in case of a fire and does not have a sustained combustion. The purpose of this study was to evaluate the fire spreadability by changing the internal fillers while using alkoxide-based acrylic emulsions, hybrid acrylic emulsions, and general acrylic emulsions in order to suppress the fire spreading properties of exterior finish materials.

  • PDF

Study on the Fire Investigation by Damaged Pattern Analysis of Incandescent Lamps (백열전구의 소손 패턴 분석을 통한 화재조사 연구)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Moon, Hyun-Wook;Choi, Chung-Seog;Choi, Hyo-Sang
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • In this paper, we conducted experiments on damaged patterns of incandescent lamps by external stress, such as external flame or external impact. Glass bulbs were melted and filaments were evaporated by external flame when the bulbs were lit, and finally molten marks were recognized at the filaments. Also, there were some differences in absorption patterns of evaporated filament elements according to set-up directions, and evaporated filament elements were absorbed in lead-in wires, support, inside of glass. In case the bulbs were lit and they were damaged by external impacts, filament burned out. Filaments were not evaporated but melted. We expect that this results could be used to judge whether electric current flew through incandescent lamps or not in fire site.

An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method (건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.75-85
    • /
    • 2018
  • The Grenpell tower fire in England in June of 2016 is a representative example of damage caused by a vertical fire spreading through external insulation. Organic insulation materials, which are widely used in external insulation, have the disadvantage that they have good insulation performance but are vulnerable to fire. Aluminum composite panels are used as exterior wall finishing materials, and plastics used in aluminum are regarded as the cause of vertical fire spread. Due to the steel frame used to secure the aluminum composite panel to the outer wall, a cavity is formed between the outer wall and outer wall finish. When a fire occurs on the outer wall, the flammable outer wall as well as the flame generated from the heat-insulating material spreads vertically through the cavity, resulting in damage to people and property. In Korea, material unit performance tests are carried out by the Ministry of Land, Infrastructure and Transport notice 2015 - 744. However, in the UK, the BS 8414 test is used to measure the vertical fire spreading time on the outer wall in real scale fire tests. In this study, the risk of external wall fire was evaluated in an actual fire by conducting a real scale wall fire test (BS 8414), which was carried out in Europe, using aluminum composite panels of semi-noncombustible materials suitable for current domestic standards. The purpose of this study was to confirm the limitations of material unit evaluation of finishing materials and to confirm the necessity of introducing a system to prevent the spread of outer wall fire through an actual scale fire test.

Comparative Study on the Standards of Internal and External Materials of Each Country for Fire Safety of Buildings (건축물의 화재안전설계를 위한 각국의 내·외장재 기준 비교 연구)

  • Huh, Ye-Rim;Kim, Yun-seong;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.170-171
    • /
    • 2021
  • In Korea, the concentration of cities has led to the high-rise and deep-rise of buildings. In the case of such high-rise buildings, there is a high risk of fire, and the number of internal fires expanding to the outside continues to increase. The Korean Building Act continues to change the ban on combustible exterior materials, and combustible exterior materials are currently not available for buildings with three stories or more than 9 meters, and detailed test standards for finishing materials are also strengthened after the Ulsan residential and commercial fires in 2020. However, the path of fire in the actual building is through a series of processes in which the fire in the compartment grows internally and expands through openings supplied with ventilation factors. Therefore, other than just external materials, design criteria for embedded materials also need to be established. The purpose of this study is to compare standards for internal and external materials at home and abroad and to secure basic data for fire safety design of buildings based on them.

  • PDF