• Title/Summary/Keyword: external images of scientists

Search Result 6, Processing Time 0.019 seconds

A Comparative Analysis of the Understanding of Ordinary Elementary School Students and Scientifically Gifted Students about Scientists (과학자에 대한 초등학교 일반 학생과 과학 영재반 학생의 인식 비교 분석)

  • Kim So-Hyeong;Bak Je-Il;Jeong Jin-Su;Lee Hea-Jung;Kwon Yong-Ju;Park Kuk-Tae
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was designed to compare the understanding of ordinary elementary school students and scientifically gifted students about scientists. 473 fourth, fifth, and sixth graders in ordinary elementary schools and 40 students attending scientific educational institutions for the gifted were studied with the help of questionnaires and interviews. The survey showed that there were no significant differences between the two subject groups in relation to the external images of scientists. The subjects turned out to have low fixed external images. The scientifically gifted students had a better understanding of the internal images of scientists than ordinary elementary school students. Both the subject groups fumed out to be influenced by the press media and off-campus education, thinking that scientists served as inventors producing something useful in daily lift rather than as researchers studying natural phenomena or laws. It was found out that both groups admired Edison. The ordinary students respected Einstein and Jang Yeong-Sil whereas the scientifically gifted students respected Curie, Jug Yeong-Sil, and Nobel. The subjects admired them because of their achievements instead of their backgrounds or individual characteristics.

  • PDF

Secondary Pre-service Science Teachers' Image of Scientists and Perception on the Science-Related Career (중등 예비 과학교사들의 과학자 이미지 및 과학 관련 직업에 대한 인식)

  • Song, Youngwook;Cho, Hyukjoon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.753-763
    • /
    • 2018
  • The image of scientists that learners have has an important impact on science learning and on science-related career choices. The image of the scientist was mainly analyzed using the drawing analysis method. Drawing analysis has limitations on drawing, mainly analyzing the external image of scientist. Science teachers' images of scientists and their perception of science-related careers are important factors in students' science learning and science-related career choices. However, research on science teachers is lacking. Therefore, the purpose of this study is to investigate the usefulness of measurement tools by developing and applying a scientist image measurement tool through the semantic analysis method, and to discuss the educational implications of the research by investigating the image of scientists and science-related professions of secondary pre-service science teachers. The subjects of the study were 79 male and 55 female for a total of 134 students in the 2nd and 3rd grades majoring in science education at a teachers college. The results of the research show that the image measurement tool consisted of four components: 'ability,' 'evaluation,' 'activity,' and 'emotion,' in 24 items. As a result of applying the developed measurement tool to the secondary pre-service science teachers, the image of the 'evaluation,' 'ability,' and 'activity' elements of the scientist were high, but 'emotion' was low. There was no statistically significant difference according to gender. It is found that science-related career perceive them as 'hard,' 'professional,' 'smart,' and 'complex.' In particular, male students perceive themselves as 'hard and difficult' while female students perceive it as 'challenging and complicated'. Finally, we discussed the usefulness of using the image measurement tool of the scientists, the image of the scientists of the secondary pre-service science teachers, and the educational implications on science-related career.

Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion (계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델)

  • 박주영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.589-600
    • /
    • 2002
  • Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.

Volume Reconstruction by Cellboundary Representation for Medical Volume Visualization (의료영상 가시화를 위한 셀 경계 방식 체적 재구성 방법)

  • Choi, Young-Kyu;Lee, Ee-Taek
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.235-244
    • /
    • 2000
  • This paper addresses a new method for constructing surface representation of 3D structures from a sequence of tomographic cross-sectional images, Firstly, we propose cell-boundary representation by transforming the cuberille space into cell space. A cell-boundary representation consists of a set of boundary cells with their 1-voxel configurations, and can compactly describe binary volumetric data. Secondly, to produce external surface from the cell-boundary representation, we define 19 modeling primitives (MP) including volumetric, planar and linear groups. Surface polygons are created from those modeling primitives using a simple table look-up operation. Comparing with previous method such as Marching Cube or PVP algorithm, our method is robust and does not make any crack in resulting surface model. Hardware implementation is expected to be easy because our algorithm is simple(scan-line), efficient and guarantees data locality in computation time.

  • PDF

Morphological Changes of Hair Structure by UV Irradiation (자외선 조사에 의한 모발구조의 형태학적 변화)

  • Kim, Jung-Hoan;Lee, Ok-Sub;Han, Ji-Sook;Shin, Sung-Yeon;Baek, Doo-Hyun;Ha, Byung-Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • In this study, we have investigated the effects of ultraviolet (UV) irradiation on the external and internal structure of human hair. For changes in morphological and chemical structure of UV-exposed hair, we utilized several microscopic techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), confocal laser scanning microscope (CLSM), and etc. The SEM showed the scales of UV-exposed hair appeared to be rough and bulkier because of chemical oxidation during UV irradiation. Small bulgy area of UV_exposed hair surface was appeared as a result of the decomposition in cysteic acid. In the TEM picture the UV-exposed hair showed the cleaved aperture of hair and destruction of melanin granules. Three dimensional topographical images were obtained by using CLSM. In the optical single section, high fluorescent intensity appeared in virgin hair. In the case of UV-exposed hair, low fluorescence intensity appeared. This means the aromatic amino acids in virgin hair were more abundant than UV-exposed hair.

Digital Reproduction of Mobiles (모빌의 디지털 재현)

  • Lee, Dong-Chun;Lee, Nam-Kyeong;Jung, Dae-Hyun;Kim, Chang-Tae;Lee, Dong-Kyu;Bae, Hee-Jung;Baek, Nakhoon;Lee, Jong-Won;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.415-423
    • /
    • 2001
  • Recently, there are many attempts to reproduce real world fine art pieces in digital forms. The digital representations are convenient to store and/or transmit. In contrast, mobiles, or moving sculptures, such as those designed by Alexander Calder cannot to reproduced realistically by usual reproduction techniques. Since mobiles are originally designed to generate motions in response to external forces applied to it, people could not fully enjoy them through photographs or static images. We present a virtual mobile system where use can easily control the mobile and can feel the impressions that the artist originally intended to provide. A real-world mobile is reconstructed in a three-dimensional physically-based model. and then virtual wind is generated to give motions to it. The motions of the mobile are generated by constraint dynamics and impulse dynamics techniques, which are modified to fully utilize the characteristics of the mobile, and finally give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

  • PDF