• Title/Summary/Keyword: factory-style

Search Result 30, Processing Time 0.028 seconds

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF

Actual State and Development Strategies on Cultivation Technology of Factory Style Plant Production in Korea (한국의 공장적 식물생산 기술의 현황 및 발전 방향)

  • 권영삼
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.75-89
    • /
    • 1996
  • Factory style plant production system be aimed to produce standardized horticultural products with high quality and clean due to optimization of environment and the improvement of working efficiency, through overcome non-efficiency of production structure in conventional cultivation method. The suggest about actual techniques and development strategies of plant factory in Korea are as follows. (omitted)

  • PDF

Plant Factory - A Prospective Urban Agriculture (식물공장 - 미래의 도시농업)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1993
  • 최근 작물의 공장적 재배는 $\boxDr$식물공장$\boxUl$이라는 단어로 대표되는, 새로운 재배방식의 하나로서 세계적으로 주목받고 있다. 식물공장(plant factory or factory- style plant production system)이라는 단어의 의미와 같이 $\boxDr$시설내의 작물을 공장제품의 생산과 동일하게 재배하는 시스템$\boxUl$이다. 즉 자연환경에 의존하지 않고 인공환경하에서 식물을 공장적으로 재배하는 방식을 의미한다. 이를 위해서는 지하부의 양액, 지상부의 온습도, 탄산가스, 광 등에 대한 고도의 환경제어 및 작업의 자동화가 필요하다.(중략)

  • PDF

Development of Automatic Lettuce Harvesting System for Plant Factory (식물 공장용 자동 상추 수확 시스템 개발)

  • 조성인;류관희;신동준;장성주
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.629-634
    • /
    • 1998
  • Factory-style plant production system aims to produce the standardized horticultural products with high quality and cleanness. In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automating technologies for harvesting, transporting and grading need to be developed. A lettuce harvesting system applicable to the plant factory was studied. It was composed of an articulated robot with a cutter and a gripper, lettuce feeding conveyor and air blower. Success rate of the developed system was 94.7 %. The system carried out harvesting a lettuce smoothly and the harvesting time was about 6 seconds per lettuce. The results showed a feasibility of robotic lettuce harvesting.

  • PDF

기술사 마당 - 주방 후드 부스타 배기 방식

  • Jin, Nam Gi
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.6
    • /
    • pp.44-51
    • /
    • 2012
  • Local functional, closed the hood and exhaust are classified as open-style hood. Around the closed hood contaminants prevent the spread of contaminants. Surrounded Some pollutants (open-style hood is used in cases where the odor, vapor diffusion, and inferior) of indoor allowed to Hood expressions, which are used for kitchen, laboratory, factory canopy is typical. Contamination that occurs during cooking, kitchen ventilation barrier materials are the biggest problem, its solution by introducing fresh outside air in the kitchen troubleshoot and. Study on the kitchen exhaust airflow for my kitchen, and perform a number of each Institute and at the University of hydrodynamic analysis is investigated.

  • PDF

Research about the IoT based on Korean style Smart Factory Decision Support System Platform - based on Daegu/Kyeongsangbuk-do region component manufacture companies (IoT 기반의 한국형 Smart Factory 의사결정시스템 플랫폼에 대한 연구 - 대구/경북 부품소재 기업을 중심으로)

  • Sagong, Woon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The current economic crisis is making new demands on manufacturing industry, in particular, in terms of the flexibility and efficiency of production processes. This requires production and administrative processes to be meshed with each other by means of IT systems to optimise the use and capacity utilisation of machines and lines but also to be able to respond rapidly to wrong developments in production and thus to minimise adverse impacts on the business. The future scenario of the "smart factory" represents the zenith of this development. The factory can be modified and expanded at will, combines all components from different manufacturers and enables them to take on context-related tasks autonomously. Integrated user interfaces will still be required at most for basic functionalities. The complex control operations will run wirelessly and ad hoc via mobile terminals such as PDAs or smartphones. The comnination of IoT, and Big Data optimisation is bringing about huge opportunities. these processes are not just limited to manufacturing, anywhere a supply chain environment exists can benefit from information provided by linked devices and access to big data to inform their decision support. Building a smart factory with smart assets at its core means reaching those desired new levels of productivity and efficiency. It means smart products that leverage advanced traceability, connectivity and intelligence. For businesses, it means being able to address the talent crunch through more autonomous. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making.

Patented Modern Gothic Chair in the Brooklyn Museum of Art by Fredrick W. Krause

  • Kim, Seong-Ah
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.4
    • /
    • pp.85-99
    • /
    • 2006
  • Fredrick Krause's chair in the Brooklyn Museum of Art (accession no. 87. 19) is a key to the understanding of factory-made, patent furniture, and the Modern Gothic style in the United States. However, research has rarely done for this chair as well as for the designer. Since this piece is incorporating the utility patent, it is a valuable example to understand the nineteenth-century patented furniture. Because of the popularity of Modern Gothic style, the similar style of chairs were often manufactured. This study explores how other examples are related and what the significance of the Brooklyn Museum chair is. The book of Sharon Darling provided especially helpful information about other Krause chairs in Fond du Lac and chair manufactures in Chicago. The interview with John Ebert at Galloway House in Fond du Lac, Wisconsin was especially helpful. Several primary sources proved helpful in researching the chair. The photo archives. of Kimbel and Cabus at the Cooper-Hewitt National Design Museum provides me a key to this research.

  • PDF

A DEVELOPMENT OF RFID/USN-BASED INTELLIGENT EQUIPMENT FOR CONSTRUCTION SUPPLY CHAIN MANAGEMENT

  • Tae-Hong Shin;Su-Won Yoon;Sangyoon Chin;Soon-Wook Kwon;Yea-Sang Kim;Cheolho Choi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.472-478
    • /
    • 2009
  • The scopes of the supply chain management in construction projects has expanded from the field management focusing on field storage, transportation, and lifting to the whole supply chain from the materials to field. The expansion of the supply chain management can raise the possibilities of leaner production, which enables shortened lead time of the difficult-to-operate materials, and prevents the work interference or delay. However, the expanded management range requires more information and management than an existing management style currently used for factory production of iron frame, curtain wall, PC, etc. In addition, there are limitations that expand the existing management style into the new supply chain management in construction projects and therefore it is required to automate the existing management style in order to extend the management range. The objective of this study is to propose the process and equipment that can manage the supply chain of the materials which range from the factory production to the field storage based on RFID/USN techniques, introducing small-sized transportation equipment(intelligent pallet), the vehicle tool kit(intelligent trailer), and in-and-out management equipment(Gate Sensor) as a prototype to effectively develop the appliances for operating the proposed process, and present the application possibility of the appliances. The full paper will present then the test results that the proposed appliances for the supply chain management automatically transmit and receive the generated information between the appliances or the appliance and sever under various wireless network circumstances such as zigbee, wibro, Wi-Fi, and CDMA.

  • PDF

Exposed level of workers in the factory next to a lead recycling factory (연 재생공장 인접 근로자들의 연 폭로정도에 관한 조사)

  • Kim, Jin-Ha;Lee, Duk-Hee;Lee, Yong-Hwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.3 s.54
    • /
    • pp.693-700
    • /
    • 1996
  • The purpose of this study was to determine whether workers at a factory next to a lead recycling factory in Pusan, were affected by lead contamination. The mean air lead concentration of lead recycling factory was $0.21mg/m^3(TWA=0.05mg/m^3)$. Thirty-nine male workers of Factory A, Cr. plating factory next to the lead recycling factory were exposed group and a comparison group, 62 male workers of Factory B were selected from another Cr. plating factory about 8.5km away from lead recycling factory. Air lead concentration of each workplace was checked for 4 times from August f to August 20 in 1995 by low volume air sampler. Each subject was interviewed about age, life-style, smoking, work history, and residence etc, and venous blood was drawn for lead measurement by graphite furnace atomic absorption spectrometry. We have observed that air lead concentration and blood lead concentration of Factory A was higher than Factory $B(2.6{\pm}1.6\;Vs.\;1.2{\pm}0.2{\mu}g/m^3,\;14.9{\pm}1.6\;Vs.\;12.2{\pm}1.6{\mu}g/dl)$. We believe that other environmental lead sources such as transportation and residence did not affect air lead and blood lead concentration differences of both factory. We concluded that high air lead and blood lead concentration of Factory A were caused by lead contamination generated by the neighboring lead recycling factory.

  • PDF

ACTUAL STATE AND PRACTICAL USE OF THE FACTORY-STYLE PLANT PRODUCTION SYSTEM USING TISSUE CULTURE

  • Holdgate, D.P.;Zandvoort, E.A.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.41-62
    • /
    • 1996
  • Since 1966 tissue culture has been used as a tool for the production of disease indexed stocks from selected plants and their rapid (clonal) mass propagation through the procedure now referred to as micropropagation. The major advantages have been the rapid introduction of new plant cultivars, created within conventional and mutation breeding programmes, as healthy stock for beneficial distribution and the expansion of the world wide horticultural industry. (omitted)

  • PDF