• Title/Summary/Keyword: fatigue capacity

Search Result 241, Processing Time 0.027 seconds

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

Effects of Red Ginseng on Exercise Capacity and Peripheral Fatigue in Mice

  • Kim, Daehyun;Lee, Byounggwan;Kim, Heejin;Kim, Mikyung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.175-184
    • /
    • 2021
  • Objective: Fatigue can decrease both quality of life and work efficiency. Ginseng is one of the most popular herbal treatments for improving personal health, with applications in treating fatigue. However, the exact mechanisms of anti-fatigue effects are still unclear. Thus, we investigated the effect of red ginseng powder (RGP) on exercise capacity and peripheral fatigue using both behavioral and molecular experiments in mice. Design: Four-groups behavioral and molecular experiment. Methods: Male 6-weeks-old ICR mice were treated with distilled water, 100, and 200 mg/kg RGP for 5 days via oral administration. The exercise capacity of each animal group was measured by locomotor activity, rota-rod, hanging wire, and cold swimming tests. Additionally, after performing the treadmill to induce fatigue, lactate expression and molecular experiments were investigated using mice gastrocnemius. Results: Mice treated with RGP exhibited increased exercise capacity in the behavioral tests. Additionally, RGP induced a dose-dependent decrease in lactate levels after high-intensity exercise, and Monocarboxylate transporter (MCT) 4 expression increased in groups treated with RGP. However, there was no significant change in MCT1. Conclusions: These results suggest that RGP exerts several anti-fatigue properties by lower lactate and improved exercise capacity. Increased MCT4 expression may also affect lactate transport. Thus, this study suggests that the anti-fatigue properties of RGP might be associated with MCT4 activity.

Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders

  • Saiidi, M. Saiid;Bush, Anita
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.353-367
    • /
    • 2006
  • Two full-scale, precast, pretensioned box girders were subjected to shear-dominated loading, one under monotonic loads to failure and the other subjected to one-half million cycles of fatigue loads followed by monotonic ultimate loads. The number of cycles was selected to allow for comparison with previous research. The fatigue loads were applied in combination with occasional overloads. In the present study, fatigue loading reduced the shear capacity by only six percent compared to the capacity under monotonic loading. However, previous research on flexure-dominated girders subjected to the same number of repeated loads showed that fatigue loading changed the mode of failure from flexure to shear/flexure and the girder capacity dropped by 14 percent. The comparison of the measured data with calculated shear capacity from five different theoretical methods showed that the ACI code method, the compression field theory, and the modified compression field theory led to reasonable estimates of the shear strength. The truss model led to an overly conservative estimate of the capacity.

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress (피로손상된 제진합금의 감쇠능에 미치는 피로 응력의 영향)

  • Lee, Myeong-Soo;Lee, Ye-Na;Nam, Ki-Woo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.583-589
    • /
    • 2018
  • This study investigates the effect of fatigue stress on the damping capacity in a damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms by fatigue stress in the damaged Fe-22Mn-12Cr-3Ni-2Si4-Co damping alloy under fatigue stress. The ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms with the specific direction and surface relief, or they cross each other. With an increasing fatigue stress, the volume fraction of ${\alpha}^{\prime}-martensite$ and ${\varepsilon}-martensite$ increases. With an increasing fatigue stress, the damping capacity increases with an increase in the volume fraction of ${\varepsilon}-martensite$. The increase in the damping capacity in the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co alloy under fatigue stress strongly affects the increase of ${\varepsilon}-martensite$ formed by fatigue stress, but the damping capacity of the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress is strongly controlled by a large amount of ${\alpha}^{\prime}-martensite$.

Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs

  • He, Yuliang;Zhuang, Jie;Hu, Lipu;Li, Fuyou;Yang, Ying;Xiang, Yi-qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.109-121
    • /
    • 2022
  • Twelve push-out test specimens were conducted with various parameters to study the static and fatigue performance of a new through-bolt shear connector transferring the shear forces of interface between prefabricated hybrid fiber reinforced concrete (HFRC) slabs and steel girders. It was found that the fibers could improve the fatigue life, capacity and initial stiffness of through-bolt shear connector. While the bolt-hole clearance reduced, the initial stiffness, capacity and slippage of through-bolt shear connector increased. After the steel-concrete interface properties were improved, the initial stiffness increased, and the capacity and slippage reduced. Base on the test results, the equation of the load-slip curve and capacity of through-bolt shear connector with prefabricated HFRC slab were obtained by the regression of test results, and the allowable range of shear force under fatigue load was recommended, which could provide the reference in the design of through-bolt shear connector with prefabricated HFRC slabs.

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Concept Analys is : Fatigue (피로의 개념분석)

  • Choi, Euy-Soon;Song, Min-Sun
    • Women's Health Nursing
    • /
    • v.9 no.1
    • /
    • pp.61-69
    • /
    • 2003
  • Fatigue is a universally common word. The subject has been studied in different disciplines, but the basic concept of the term still remains unidentified. It becomes especially important for the medical communications between nurses and clients. Based on the framework outlined by Walker and Avant (1995), this analysis attempts to clarify and examine the symptoms of fatigue. The attributes of fatigue identified in this paper were exhaustion, weighted psychological burden, shortage in capacity or lack of energy, shortage incapacity(motivation and excitement), and imbalance of energy. Therefore, the definition of fatigue refers to a subjective feeling from various internal or external stresses. The consequences of fatigue bring reduced capacity and imbalance of energy. The symptoms show a homeostatic disability or shortage of capacity (physical, psychological, environmental and physiological factors). A precise understanding of "fatigue" will be utilized in defining the causes and measuring outcomes. Also, it will enhance the effective medical communications with client s and nurses. In conclusion, more work is needed to develop objective measurement and effect ivenursing intervention.

  • PDF

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.