• Title/Summary/Keyword: fault tolerance

검색결과 570건 처리시간 0.022초

Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상 (Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition)

  • 김희운;윤진규;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

비행조종컴퓨터 소프트웨어 기반 고장허용 설계 기법 연구 (A Study on Software Based Fault-Tolerance Techniques for Flight Control Computer)

  • 윤형식;김연균
    • 한국항공우주학회지
    • /
    • 제44권3호
    • /
    • pp.256-265
    • /
    • 2016
  • 소프트웨어 기반의 고장허용이란 장비의 일부분에 소프트웨어 고장이 발생하더라도 허용할 수 있도록 장비를 설계하는 것을 의미힌다. 고장허용을 위한 설계 방법은 크게 하드웨어 기반 고장허용 설계 방법과 소프트웨어 기반 고장허용 설계 방법이 있으며, 시스템의 특징에 따라 적절한 방법의 고장허용 설계 방법 선택이 필요하다. 본 논문에서는 하드웨어적으로 이중화로 구성된 비행조종컴퓨터의 소프트웨어 기반 고장허용 설계 기법에 대하여 기술하였다. 소프트웨어 기반의 고장허용 설계를 위하여 소프트웨어 고장을 분류하고, 고장에 대한 검출 방법을 설계한 후, 고장발생시 복구 방법을 설계하였다. 설계된 방법의 유효성을 확인하기 위하여 전용 소프트웨어 시험 환경을 통해 설계된 소프트웨어 기반 고장허용 설계의 타당성을 검증하였다.

서비스로봇의 신뢰성 향상을 위한 OPRoS 기반 Fault-tolerance 기법 (OPRoS based Fault Tolerance Support for Reliability of Service Robots)

  • 안희준;이동수;안상철
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.601-607
    • /
    • 2010
  • For commercial success of emerging service robots, the fault tolerant technology for system reliability and human safety is crucial. Traditionally fault tolerance methods have been implemented in application level. However, from our studies on the common design patterns in fault tolerance, we argue that a framework-based approach provides many benefits in providing reliability for system development. To demonstrate the benefits, we build a framework-based fault tolerant engine for OPRoS (Open Platform for Robotic Services) standards. The fault manager in framework provides a set of fault tolerant measures of detection, isolation, and recovery. The system integrators choose the appropriate fault handling tools by declaring XML configuration descriptors, considering the constraints of components and operating environment. By building a fault tolerant navigation application from the non-faulttolerant components, we demonstrate the usability and benefits of the proposed framework-based approach.

결함 허용 시스템 간 이상적 통신방안 연구 (Research of Ideal Communication Methodology among Fault Tolerance System)

  • 구철회
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 I
    • /
    • pp.398-401
    • /
    • 2003
  • In this paper, the basic concept and approach method of ideal communication among fault tolerance system has been studied and suggested. Fault tolerance should not be treated like Fault Avoidance and Fault Prevention. In this paper, Key specifications of mechanical and electrical characteristics of communication methods for fulfilling the requirements to meet the general purpose of fault tolerance system has been analyzed and presented.

  • PDF

Software Fault Tolerance를 이용한 송전선로의 고장점 표정 알고리즘 (Fault Location Algorithm using Software Fault Tolerance)

  • 장용원;한승수;김원하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.875-877
    • /
    • 2003
  • This paper use fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line that use only local end voltage and current information. When Newton-Raphson iteration method is used, the Initial value may cause error or cause not suitable result. Suggested new calculation model uses NVP methodology, which is one of the fault tolerance technology to solve this problem. EMTP simulation result has shown effectiveness of the algorithm under various conditions.

  • PDF

소프트웨어 Fault Tolerance를 이용한 고장점 표정 (Fault Location Identification Using Software Fault Tolerance Technique)

  • 김원하;장용원;한승수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권2호
    • /
    • pp.73-78
    • /
    • 2005
  • The management of technological systems will become increasingly complex. Safe and reliable software operation is a significant requirement for many types of system. So, with software fault tolerance, we want to prevent failures by tolerating faults whose occurrences are known when errors are detected. This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line using software fault tolerance technique. To find the fault location of transmission line, we have to solve the 3rd order transmission line equation. A significant improvement in the identification of the fault location was accomplished using the N-Version Programming (NVP) design paradigm. The delivered new algorithm has been tested with the simulation data obtained from the versatile EMTP simulator.

모듈기반 퍼스널 로봇을 위한 Fault Tolerant 구조 (Fault tolerant architecture for Module-based personal robot)

  • 백범현;지동준;박찬정;한기성;이선영;김경태;홍성원;박홍성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.297-299
    • /
    • 2006
  • Many distributed applications is developed in various environment such as operating system, software platform. So, they exhibit different types of system behavior, status, during the course of their operation. Each such behavior may have different functional and non-functional requirements. Therefore, many distributed application need to fault-tolerance solution. Personal robot provide various service or application. Because personal robot has many application or service, it need to fault-tolerance architecture. A flexible architecture is required to provide dependability. In this paper, it is suggested a fault-tolerant architecture for module-based personal robot with module fault-tolerance, service fault-tolerance.

  • PDF

상태감시컴포넌트를 사용한 OPRoS 프레임워크의 고장감내 기법 (State-Monitoring Component-based Fault-tolerance Techniques for OPRoS Framework)

  • 안희준;안상철
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.780-785
    • /
    • 2010
  • The OPRoS (Open Platform for Robotic Services) framework is proposed as an application runtime environment for service robot systems. For the successful deployment of the OPRoS framework, fault tolerance support is crucial on top of its basic functionalities of lifecycle, thread and connection management. In the previous work [1] on OPRoS fault tolerance supports, we presented a framework-based fault tolerance architecture. In this paper, we extend the architecture with component-based fault tolerance techniques, which can provide more simplicity and efficiency than the pure framework-based approach. This argument is especially true for fault detection, since most faults and failure can be defined when the system cannot meet the requirement of the application functions. Specifically, the paper applies two widely-used fault detection techniques to the OPRoS framework: 'bridge component' and 'process model' component techniques for fault detection. The application details and performance of the proposed techniques are demonstrated by the same application scenario in [1]. The combination of component-based techniques with the framework-based architecture would improve the reliability of robot systems using the OPRoS framework.

다중 컴퓨터 시스템에서의 Beta-network의 링크선에 관한 Fault-tolerance 분석 (Fault-tolerance Analysis of Link Line of Beta-network in the Multicomputer System)

  • 전우천;김성천
    • 대한전자공학회논문지
    • /
    • 제24권4호
    • /
    • pp.610-617
    • /
    • 1987
  • This thesis is concerned with fault-tolerance of a B-net (Beta-network) which is a kind of interconnection network in the multicomputer system. In this paper, a method for obtaining Maximal Tolerable Fault Set(MTFS) of link line connecting switching elements in the arbitrary B-net is presented. Using this method, it is seen that testing of DFA capability is possible when s-a-faults of link line occur, and criterion for determining degree of fault- tolerance of a B-net in terms of link line is introduced.

  • PDF

분산 저장 블록체인 시스템을 위한 효율적인 결함 내성 향상 기법 (Fault Tolerance Enhancement for Distributed Storage Blockchain Systems)

  • Kim, Junghyun
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1558-1561
    • /
    • 2020
  • In this paper, we propose a blockchain scheme to enhance fault tolerance in distributed storage blockchain systems. Traditional blockchain systems suffer from ever-increasing storage cost. To overcome this problem, distributed storage blockchain techniques have been proposed. Distributed storage blockchain schemes effectively reduce the storage cost, but there are still limitations in reducing recovery cost and fault tolerance. The proposed approach recovers multiple errors within a group by utilizing locally repairable codes with availability. This improves the fault tolerance of the blockchain systems. Simulation results show that the proposed scheme enhances the fault tolerance while minimizing storage cost and recovery cost compared to other state-of-art schemes.