• Title/Summary/Keyword: fecal coliforms

Search Result 101, Processing Time 0.04 seconds

Comparative Analysis of Total and Fecal Coliforms in Sea Water (해수의 대장균군과 분변계대장균의 검출률 비교 분석)

  • Kim, Young-Man;Kim, Kyoung-Hee;Park, Hye-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.5
    • /
    • pp.288-292
    • /
    • 2007
  • Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often caused by pathogenic microorganisms originating from fecal contamination, such as Salmonella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefore, data on fecal coliforms are very important for evaluating the safety of fisheries in coastal areas. In this study, 2,226 sea water samples were collected from the southeast coast of Korea, and total and fecal coliforms were compared and analyzed. Total coliforms were detected in 76.5% of the samples and 71.4% of the total coliforms were fecal coliforms. At sea water temperatures above $20.0^{\circ}C$, total coliforms were found in 78.8% of the samples and fecal coliforms constituted 72.0% of the total coliforms. In sea water below $19.9^{\circ}C$, the respective values were 74.6% and 70.9%. These results suggest that temperature does not have a significant effect on the detection of fecal coliforms. When the salinity exceeded 30.0%o, total coliforms were found in 72.1% of the samples and fecal coliforms constituted 66.0% of these. At salinities below 29.9%o, the respective values for total and fecal coliforms were 90.4% and 85.2%. These results strongly suggest that the detection of fecal coliforms is proportional to the amount of precipitation.

A study on Investigation of Fecal Contamination Indicator Bacteria for Management of Source Water Quality (상수원 수질관리를 위한 분변오염 지표세균에 관한 연구)

  • 장현정;이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • Coliforms is currently being used as the standard of environmental water qualify to evaluate the level of source water quality especially condition of fecal contamination. However, not properly applied to water quality management. So in this study, in addition to Coliforms, fecal contamination indicator bacteria turk at Feral Coliforms(FC), E. coli, Fecal streptococci(FS), Clostridium and environmental parameters related with it's distribution were investigated on a monthly basis in 6 water intakes of Han River. The mean of BOD, DO, SS and pH, benchmarks of source water management were maintained the second grade of environmental water quality standard applied to Han River but Coliforms exceeded it. Distribution of Coliforms ranged from 1.0×10¹ to 2.7 10/sup 5/ CFU/ml, FC ranged from ND to 5.3×10¹ CFU/ml, E. coli ranged from ND to 9.2×10¹ CFU/ml, FS ranged from ND to 2.5×10¹CFU/ml, they were steepy rise on July and August in common when rainfalls was heavy and water temperature was high, but Clostridium perfringens ranged from 1.7×10¹to 1.7×10¹CFU/ml not fluctuate by month. Statistical analysis of sampling data showed that most significant correlations occurred among FC and Coliforms(r = 0.840), E. coli(r = 0.792), FS(r = 0.687) and environmental parameters(temperature, turbidity, SS, rotor were all r > 0.60) while no significant correlation was observed between ammonia generally recognized fecal contamination indicator and bacteria. Identification of the coliforms showed that Enterobacter, Klebsiella, Citrobacter were comprised of 32%, 24%, 16% respectively, and E. coli were 7% of it. while E. coli was made up 85.9% of FC. The mean value of FC/Coliforms ratio, 5.2(0.1-42) were higher in Amsa, Guui than Jayang. Fecal coliforms, as those are able to reflect more particularly the extent of the fecal contamination, were considered useful in deciding the level of water treatment while monitoring the fecal contamination from the source of water supply. Therefore, it is expected that the water quality is going to be managed more efficiently by using fecal coliforms supplementarily to total coliforms which are current standard item of water-quality environment.

Enumeration and Comparison of Fecal Indicator Bacteria in a Sewage Treatment Plant Using Activated Sludge Process (활성슬러지공정 하수종말처리장의 분원성 지표세균의 농도 및 비교)

  • Lee, Dong-Geun;Sung, Gi-Moon;Jung, Mi-Ra;Park, Seong-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.141-147
    • /
    • 2010
  • Indicator bacteria of fecal pollution were enumerated and compared by various detection methods for influent and final effluent of a sewage treatment plant. Total coliforms were enumerated by four methods including most probable numbers, chromogenic enzyme substrate test, membrane filtration, and plate counts and were about $10^4$ for influent and $10^2{\sim}10^3\;CFU/ml$ for final effluent. Fecal coliforms ranged between $10^3$ and $10^4$ for influent and $10^2\;CFU/ml$ for effluent by chromogenic enzyme substrate test and membrane filtration. Fecal streptococci counts were 1-log less than fecal coliforms counts, $10^2{\sim}10^3$ for influent and $10^1\;CFU/ml$ for effluent. Total coliforms numbers by plate count both in influent and in effluent showed 1-log higher than by the other three methods. Statistical analysis revealed that numbers of total coliforms by plate count in final effluent had the highest average of correlation (r=0.778, p<0.01) compared with those by the other three methods. In addition, total coliforms numbers by plate count showed most significant correlation (r=0.835, p<0.01) with those by chromogenic test which is well-known as its highest recovery efficiency. These results suggest that the plate count would be the optimum detection method for total coliforms in wastewater treatment plants which are the only microbiological standard of final effluent from wastewater treatment plants in the Republic of Korea, considering economic aspects and difficulties in laboratories.

Bacteriological Water Quality of Lake Eui-Am

  • Choe, Sang;Kim, Geon Chee
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.78-84
    • /
    • 1971
  • A year-long survey of bacteriological water quality for Lake Eui-am in Kang- won Province, Korea, was conducted from June 1970 to May 1971. the purpose of this investigation was: 1) to determinate the seasonal prevalence of fecal pllution bacteria, such as coliforms, fecal coliforms and enterococci, in Lake Eui-am; 2) to correlate these findings with associated microbiological parameters; and 3) to interpret these results with respect to water quality and environmental health. The membrane filter techniques were used, for the determination of these bacteria.Densities of total coliforms, fecal coliforms and enterococci exhibited seasonal variations, the numers of these fecal pollution bacteria being high in summer and fall months in close possitive relation to the amount of rainfall, and being low winter and spring months. On the whole, the level of fecal pollution bacteria in Lake Eui-am is yet quite low There were not any evident correlation among the density of these pollution bacteria. The ratio of fecal coliforms to enterococci of the lake water varied from 0.01 to 4.25 with average of 1.47.

  • PDF

Occurrence Of Fecal Pollution Bacteria In The Water Of Lake Eui-Am (의암땜 하류수역의 분변성 오염세균류의 분포)

  • Choe, Sang;Kim, Geon Chee
    • 한국해양학회지
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 1970
  • The purpose of the study was to gather basic bacteriological data regarding the quality of Korean surface waters. Total coliforms, fecal coliforms and fecal Streptococci survey in the water of Lake Eui-Am were undertaken by the membrance filter technique. A total of 37 samples were collected in August 14, 1970. Total coliforms were detected in all samples, fecal coliforms and fecal Streptococci were detected in 68% and 82% of samples, respectively. Bacterial densities of the lake water were varied by station and depth. The numbers of bacteria per 100ml of the lake water were; 8-225(65.3 average) for the total coliforms, 0-112(26.2 average) for the fecal coliforms, 0-77(25.8 average) for the fecal Streptococci, and 8-302 (91.1 average) for the total number of total coliforms and fecal Streptococci. These results suggest that the Eui-Am lake water is only lightly polluted and indicate that the lake water, properly maintained, is a source of raw water of good bacteriological quality. Three forms of fecal pollution bacteria tend to increase with depth. This is believed that the suspended matter with conglomerated bacteria plays an important role in regulating of bacterial densities in summer season.

  • PDF

Modification of Medium to Examine Fecal Coliforms in Water (물에서의 분원성대장균군 검사를 위한 최적 배지 선정)

  • Lee, Eunsook;Ko, Nayun;Choi, Byungdo;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.275-283
    • /
    • 2020
  • Fecal coliforms are indicator bacteria to evaluate fecal contamination and microbiological safety in environment water. To examine fecal coliforms by membrane filtration, 1% rosolic acid solution dissolved in sodium hydroxide(0.2 M) should be added to m-FC medium according to Korean standard method. To reduce the exposure of researchers to harmful chemicals and expenditure of unnecessary cost, we evaluated if the rosolic acid solution is required to detect fecal coliforms. For 113 samples collected from five intake sources of Seoul, 42 samples of six tributaries, and 11 samples of sewage, the number of fecal coliforms was compared in medium with or without the reagent. As a result, the number was higher in m-FC medium without the reagent, but there was not a statistically significant difference. In the water intake, m-FC medium without the reagent could be used to examine fecal coliforms except in July, August and in case of rainfall. When heterotrophic plate counts exceeded 1,000 CFU/filter, or during rainfall, there was an effect of background bacteria in two types of the medium. However, it was more appropriate to use m-FC medium with the reagent to suppress gram-positive bacteria that can grow on medium without the reagent. In the tributary and sewage samples, the effect of the background bacteria was low, allowing the use of medium without the reagent regardless rainfall. Thus, it is necessary to present in standard method that the addition of rosolic acid solution in m-FC medium can be selected according to the characteristics of samples.

Comparative Studies on Detecting Methods of Fecal Indicators (Coliforms) in Surface Water (지표수에서의 분변오염지표세균 (대장균군) 검출방법의 비교연구)

  • Park, Ji-Eun;Kim, Sun-Duck;Cho, Ju-Rae;Kim, Sang-Hyun;Lee, Hae-Jin;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • For monitoring the fecal pollution at Nak-Dong River, one of the eutrophicated rivers, the differences between total coliforms (TC) and fecal coliforms (FC) using both of membrane filtration (MF)/MPN method, and also fecal streptococcus (FS) by MF-method was investigated. To evaluate the correlation between TC, FC, and FS statistical analyses were performed by using Minitab. And a part of the presumptive TC/FC and background colonies was purified and identified using API 20E kit (Biomeriux). As results, most (89%) of presumptive FC by MF was identified as Escherichia coli while only 14% (MPN) and 11% (MF) of TC were identified as E. coli. Furthermore, FC by MF was correlated significantly with other fecal indicators (TC/FS by MF and FC by MPN), while TC by MPN was not correlated with any other indicators. Thus, the detection of FC by MF-method may be the most reasonable for monitoring the fecal pollution.

Indicator Microorganisms Used as Fecal Contamination in Aquatic Environments (수계환경에서 분변성 오염의 지표로 사용되는 미생물들)

  • 이건형
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • The direct detection of intestinal pathogens and viruses often requires costly, tedious, and time-consuming procedures. These requirements developed a test to show that the water was contaminated with sewage-borne pathogens by assessing the hygienic quality of water based on indicator microorganisms whose presence indicates that pathogenic microorganisms may also be present. Various groups of microorganisms have been suggested and used as indicator microorganisms. Proposed and commonly used microbial indicators are total coliforms, fecal coliforms, fecal streptococci, Clostridium perfringens, heterotrophic plate count, bacteriophage, and so on. Unfortunately, most, if not all, of these indicators are not ideal because of the sensitivity and resistance to environment stresses and disinfection. However, the development of gene probes and PCR technology may give hope for the discovery of rapid and simple methods toy detecting small number of fecal pathogens in various environments.

A Study of Antimicrobial Resistance in Escherichia coli and the Distribution of Indicator Microorganisms in Asan City (아산시 지표미생물의 분포와 Escherichia coli의 항생제 내성에 관한 연구)

  • Lee, Geun-Yeol;Kim, Keun-Ha;Kwon, Mun-Ju;Kwon, Hyuk-Ku;Kim, Yeon-Hee;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Efforts to evaluate water pollution using indicator microorganisms have been underway for decades, and driven by research on water purity control applications, water quality criteria are growing more and more strict. Furthermore, recent reports indicate that high concentrations of antibiotics are not absorbed, and are present in excrement from animals and humans dosed with unnecessarily high levels of antibiotics. This has emerged as very important issue from the standpoint of being an ecological and health hazard. In this study, water pollution was analyzed through physicochemical and microbiological means, and antibiotic resistance in indicator microorganisms was assessed. In physicochemical analysis, biochemical oxygen demand (BOD)$_5$ and chemical oxygen demand (COD)$_{Mn}$ evaluation showed that pollution by organisms was highest at the G1 location with a high human population, and the DP location which has many livestock-containing households. The indicator organism levels at the G1 location were: Total Coliforms (1205 colony forming units (CFU)/100 ml), Fecal Coliforms (270 CFU/100 ml), Escherichia coli (253 CFU/100 ml) and Fecal Streptococci (210 CFU/100 ml), while for the DP location levels were: Total Coliforms (1480 CFU/100 ml), Fecal Coliforms (438 CFU/100 ml), E. coli (560 CFU/100 ml), and Fecal Streptococci (348 CFU/100 ml). Levels of fecal indicator microorganisms such as Fecal Coliforms, E. coli and Fecal Streptococci were high at all locations in the fall (the period after the rainy season), and the yearly distribution was similar between these organisms. If the number of livestock-containing households was high, almost all strains of E. coli (as distinct from the other indicator organisms) showed resistance to antibiotics, with the degree of resistance varying between areas. E. coli strains from the OY area in particular, which has a high population density, showed strong resistance to AM10 and Va30. While strong antibiotic resistance was observed overall at the DP and OY locations, no resistance was observed at the EB location.

Bacterial Removal Efficiencies by Unit Processes in a Sewage Treatment Plant using Activated Sludge Process (활성슬러지공정 하수종말처리장의 단위공정별 세균 제거효율)

  • Lee, Dong-Geun;Jung, Mira;Sung, Gi Moon;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.871-879
    • /
    • 2010
  • To figure out the removal efficiency of indicator and pathogenic bacteria by unit processes of a sewage treatment plant using activated sludge process, analyses were done for incoming sewage, influent and effluent of primary clarifier, aeration tank, secondary clarifier and final discharge conduit of the plant. A matrix of bacterial items (average of bacterial reduction [log/ml], p value of paired t-test, number of decreased cases of twenty analyses, removal percentage only for decreased cases) between incoming sewage and final effluent of the plant were heterotrophic plate counts (1.54, 0.000, 20, 95.01), total coliforms (1.38, 0.000, 19, 83.94), fecal coliforms (0.90, 0.000, 20, 94.84), fecal streptococci (0.90, 0.000, 20, 98.08), presumptive Salmonella (0.23, 0.561, 7, 99.09), and presumptive Shigella (1.02, 0.002, 15, 92.98). Total coliforms, fecal coliforms, heterotrophic plate counts, and fecal streptococci showed highest decrease through secondary clarifier about 1-log (p<0.001) between 88% and 96%, and primary clarifier represented the significant (p<0.05) decrease. However, final effluent through discharge conduit showed higher total coliforms and fecal streptococci than effluent of secondary clarifier (p<0.05). In addition, final effluent once violated the water quality standard while effluent of secondary clarifier satisfied the standard. Hence some control measures including elimination of deposits in discharge conduit or disinfection of final effluent are necessary.