• Title/Summary/Keyword: feedback inhibition

Search Result 64, Processing Time 0.027 seconds

Identification of Amino Acid Residues Involved in Feedback Inhibition of the Anthranilate Synthase in Escherichia coli

  • Kwak, Joon-Hyeok;Hong, Kwang-Won;Lee, Sung-Haeng;Hong, Jin-Han;Lee, Se-Yong
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.20-24
    • /
    • 1999
  • The first step of the branch pathway in tryptophan biosynthesis is catalyzed by anthranilate synthase, which is subjected to feedback inhibition by the end product of the pathway. The $trpE^{FBR}$ gene from a mutant Escherichia coli strain coding for anthranilate synthase that was insensitive to feedback inhibition by tryptophan has been cloned. To identify the amino acid changes involved in the feedback regulation of anthranilate synthase, the nucleotide sequence of the mutant $trpE^{FBR}$ gene was determined. Sequence analysis of the $trpE^{FBR}$ gene revealed that four bases were changed in the structural gene while alteration was not found in the 5' control region. Among these base changes, only two base substitutions caused the alterations in amino acid sequences. From the results of restriction fragment exchange mapping, the 61st nucleotide, C to A substitution, that changed $Pro^{21}{\rightarrow}Ser$ was identified as the cause of the desensitization to feedback inhibition by tryptophan. Additional feedback-resistant enzymes of the E. coli anthranilate synthases were constructed by site-directed mutagenesis to examine the effect of the $Ser^{40}\;{\rightarrow}\;Arg^{40}$ change found in the $trpE^{FBR}$ gene of Brevibacterium lactofermentum. From the feedback inhibition analysis, the $Pro^{21}{\rightarrow}Ser$ and $Ser^{40}{\rightarrow}Arg$ mutants maintained about 50% and 90% of their maximal activities, respectively, even at the extreme concentration of 10 mM tryptophan. From these results, we suggest that the $Pro^{21}$ and $Ser^{40}$ residues are involved in the tryptophan binding in the E. coli enzyme.

  • PDF

Effect of Amino Acid Substitutions of Escherichia Coli $\gamma$-Glutamylcysteine Synthetase (Escherichia coli $\gamma$-Glutamylcysteine Synthetase의 아미노산 치환 효과)

  • 남용석;김중수;곽준혁;박영인;이세영
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.278-283
    • /
    • 1991
  • Two amino acid residues ($Ala^{494}$ and $Ser^{495}$ of E. coli .gamma.-glutamylcysteine synthetase have been investigated whether they are the site of feedback inhibition by site specific mutagenesis. Single substitution of $serine^{495}$ (S495F), and double substitutions of alanine$^{494}$ and $serine^{495}$ (A494G-S495F) resulted in the inactivation of the .gamma.-glutamylcysteine synthetase activity. Substitution of $alanine^{494}$ with $glycine^{494}$ resulted in a higher level of feedback inhibition. These results suggest that $serine^{495}$ in .gamma.-glutamylcysteine synthetase is required for its catalytic acitvity and $alanine^{494}$ is presumably related to the feeback inhibition site.

  • PDF

Muscle Eccentric Control in Gait Initiation (보행 시작 시 원심성 근육 수축 조절)

  • Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.81-89
    • /
    • 2001
  • There are two independent mechanisms to control the segmental reflex gain in humans during gait. They are presynaptic inhibition and homosynaptic depression. Through the mechanism of the presynaptic inhibition, the muscle spindle afferent feedback can be properly gated during eccentric phase of gait. The modulation of the presynaptic inhibition is reflected in the level of H-reflex at a constant EMG level. During the eccentric muscle activation presynaptic inhibition should increase to account for the lower amplitude level of H-reflex at a constant level of EMG. Homosynaptic depression is another mechanism responsible for regulating the effectiveness of the muscle spindle afferent feedback. Both the presynaptic inhibition and the monosynaptic depression are responsible for modulating reflex gain during gait initiation. Reflex modulation is influenced not only as a passive consequence of the alpha motor neuron excitation level, but also through supraspinal mechanisms. Spastic paretic patients show the impaired soleus H-reflex modulation either during the initial stance phase, or during the swing phase. This abnormal modulatory mechanism can partially and artificially be restored by the application of peripheral stimulus to the sole of the foot, provided that the segmental circuitry remains functional.

  • PDF

Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

  • Ahn, Jun-Ho;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.320-326
    • /
    • 2015
  • The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

Inhibition of Acetolactate Synthase from Pea by Pyrimidine Derivatives (Pyrimidine 유도체에 의한 완두 Acetolactate Synthase의 저해에 관한 연구)

  • Joo, Young A;Kim, Dae Whang;Chang, Soo Ik;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.6
    • /
    • pp.304-312
    • /
    • 1997
  • Acetolactate synthase(ALS) is the common enzyme in the biosynthetic of valine, leucine, and isoleucine, and is the target of several classes of structually unrelated herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. In an effort to develop new and desirable herbicides, we have synthesized 4,6-dimethoxypyrimidine derivatives, and examined their inhibitory activities on pea ALS. The most active compound was found to be K11570 and $IC_{50}$ value for K11570 was 0.2 ${\mu}M.$ The inhibition of pea ALS by K11570 was biphasic, showing increased inhibition with incubation time. The K11570 showed mixed-type inhibition with respect to substrate pyruvate. Dual inhibition analysis of K11570 versus sufonylurea herbicide Ally and feedback inhibitor leucine revealed that three inhibitors were competitive for binding to ALS. The arginine modified enzyme showed decreased inhibition by K11570, sufonylurea Ally, and leucine, in constrast to, tryptophan modification did not affect on the sensitivity of ALS to the inhibitors.

  • PDF

Trait individual difference of reinforcement-based decision criterial learning during episodic recognition judgments (일화 재인 기억에서 강화에 근거한 의사결정 준거 학습의 특성 개인차 연구)

  • Han, Sang-Hoon
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.3
    • /
    • pp.357-381
    • /
    • 2009
  • Although it is known that there are personality characteristic variances in the sensitivity to environmental feedback, the trait individual difference has scarcely been explored in the context of recognition memory decision. The present study investigated this issue by examining the relationship between the feedback-based adaptive flexibility of recognition criterion positioning and personality differences in general sensitivity to non-laboratory outcomes. Experiment 1 demonstrated that veridical feedback itself had little effect on the recognition decision criterion whereas Experiment 2 demonstrated that biased feedback manipulations selectively restricted to high confidence errors, induced shifts even in the overall Old/New category criterion. Critically, individual differences in stable personality characteristic linked to reward seeking(Behavioral Activation System-BAS) and anxiety avoidance (Behavioral Inhibition System-BIS) has been shown to predict the sensitivity of subjects to this form of feedback-induced criterion learning. This data further support the idea that incremental reinforcement-based learning mechanism not often considered important during explicit recognition decisions may play a key role in criterion setting.

  • PDF

Cloning and expression of escherichia coli K-12 $trpL({\Delta}att)\;trpE^{FBR}$ gene in klebsiella pneumoniae (Klebsiella pneumoniae에 있어서의 escherichia coli K-12 $trpL({\Delta}att)\;trpE^{FBR}$유전자의 클로닝 및 발현)

  • 지연태;김익영;이세영
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.229-234
    • /
    • 1984
  • A modified E. coli trp operon, $trpL({\Delta}att)\;trpE^{FBR}$, was conjugally transfered into Klebsiella pneumoniae $KC_{100}\;(Phe^-,\;Tyr^-,\;Trp^-,\;Rif^r,\;Kam^r)$ by in vivo cloning using the hybrid plasmid $R_{6}K::$ Mucts 61 with a transfer frequency of $5.2{\times}10^{-7}$. Two K. pneumoniae transconjugants, $KUA_{701}\;and\;KUA_{702}$, were isolated. The characters of attenuation control-free and resistance to feedback-inhibition which are characteristics of donor C. coli trp operon were normally expressed in the $KUA_{701}.\;However,\;KUA_{702}$ retained only the feedback-inhibition resistant character. $Trp^+$ phenotype and ampicillin resistant character were completely stable in the transconjugants, but streptomycin resistant character was lost in the transconjugants.

  • PDF

Expression of Bacillus subtilis proBA Genes and Reduction of Feedback Inhibition of Proline Synthesis Increases Proline Production and Confers Osmotolerance in Transgenic Arabidopsis

  • Chen, Mingqing;Wei, Hongbo;Cao, JunWei;Liu, Ruijie;Wang, Youliang;Zheng, Congyi
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.396-403
    • /
    • 2007
  • Proline accumulation has been shown to correlate with tolerance to drought and salt stresses in plants. We attempt to introduce the wild-type, mutant, and fusion proBA genes derived from Bacillus subtilis into Arabidopsis thaliana under the control of a strong promoter cauliflower mosaic virus 35S (CaMV35S). The transgenic plants produced higher level of free proline than control and the overproduction of proline resulted in the increased tolerance to osmotic stress in transgenic plants. Besides, the mutation in proBA genes, which were proved to lead $\alpha$-glutamyl kinase ($\alpha$-GK) reduces sensitivity to the end-product inhibition and the fusion of proB and proA also result in increasing proline production and confer osmotolerance in transgenic lines.

Chemical Modification and Feedback Inhibition of Arabidopsis thaliana Acetolactate Synthase (아라비돕시스 탈리아나 Acetolactate Synthase의 화학적 변형과 되먹임 방해)

  • Hong, Seong-Taek;Choi, Myung-Un;Shin, Jung-Hyu;Koh, Eun-Hie
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • Acetolactate synthase (ALS) was partially purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana ALS gene. The partially purified ALS was examined for its sensitivity toward various modifying reagents such as iodoacetic acid, iodoacetamide, N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (PCMB), and phenylglyoxal. It was found that PCMB inhibited the enzyme activity most strongly followed by DTNB and NEM. Since iodoacetic acid did not compete with substrate pyruvate, it appeared that cysteine is not involved in the substrate binding site. On the other hand, the substrate protected the enzyme partly from inactivation by phenylglyoxal, which might indicate interaction of arginine residue with the substrate. The partially purified enzyme was inhibited by end products, valine and isoleucine, but not by leucine. However, the ALS modified with PCMB led to potentiate the feedback inhibition of all end products. Additionally, derivatives of pyrimidyl sulfur benzoate, a candidate for a new herbicide for ALS, were examined for their inhibitory effects.

  • PDF

Interaction of Barley Acetolactate Synthase with Triazolopyrimidine Inhibitors (Triazolopyrimidine계 저해제와 보리 Acetolactate Synthase와의 상호작용)

  • Lee, Jae Soeb;Chang, Soo Ik;Nam Goong, Sung Keon;Shin, Jung Hyu;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.306-314
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthesis of branched chain amino acids, Val, Leu, and Ile in bacteria, yeast, and higher plants. The enzyme is target site of several classes of structually diverse herbicides, including the sulfonylureas, the imidazolinones, the triazolopyrimidines, and the primidyl-oxy-benzoates. We have synthesized new triazolopyrimidine (TP) derivatives, and determined their inhibitory activities on barley ALS. $lC_{50}$ values for the active compounds were 3.2 nM-0.62 mM, and some of them appeared to be potent inhibitors. The progress curves for inhibition of ALS by TP4, a representative derivative, indicated that the extent of inhibition increased with incubation time. The inhibition of ALS by TP4 showed mixed-type inhibition with respect to pyruvate. Dual inhibition analyses of TP4 versus imidazolinone Cadre and feedback inhibitor Leu suggested that three different classes of inhibitors bind to ALS in a mutually exclusive manner. Chemical modification of tyrosyl residues of ALS decreased sensitivity of ALS to TP4, while modification of tryptophan and cysteine did not affect the sensitivity.

  • PDF