• Title/Summary/Keyword: fengycin

Search Result 23, Processing Time 0.021 seconds

Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

  • Farzaneh, Mohsen;Shi, Zhi-Qi;Ahmadzadeh, Masoud;Hu, Liang-Bin;Ghassempour, Alireza
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2016
  • In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1), caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC) method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut.

Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists

  • Kim, Hae-Min;Lee, Kui-Jae;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1954-1959
    • /
    • 2015
  • Bacillus subtilis HM1 was isolated from the rhizosphere region of halophytes for its antifungal activity against Colletotrichum acutatum, the causative agent of anthracnose. Treatment of postharvest apples with the cell culture or with a cell-free culture supernatant reduced disease severity 80.7% and 69.4%, respectively. Both treatments also exhibited antifungal activity against various phytopathogenic fungi in vitro. The antifungal substances were purified and analyzed by acid precipitation, gel filtration, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Three compounds were identified as fengycin, iturin, and surfactin. The MALDI-TOF/TOF mass spectrum revealed the presence of cyclized fengycin homologs A and B, which were distinguishable on the basis of the presence of either alanine or valine, respectively, at position 6 of the peptide sequence. In addition, the cyclized structure of fengycin was shown to play a critical role in antifungal activity.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Isolation and Characterization of Antifungal Compounds Produced by Bacillus polyfermenticus CJ6 Isolated from Meju (메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성)

  • Yang, Eun-Ju;Ma, Seung-Jin;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Antifungal compounds from Bacillus polyfermenticus CJ6 were purified using SPE, preparative HPLC, and reverse phase-HPLC. Antifungal compounds from B. polyfermenticus CJ6 were separated into three fractions (8, B, C) using preparative HPLC. LC/MS analysis of antifungal peaks suggested that B. polyfermenticus CJ6 produces lipopeptides; two kinds of iturin A ($C_{14}$, $C_{15}$), three kinds of surfactins ($C_{13}$, $C_{14}$, $C_{15}$), four kinds of fengycin A ($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$) and two kinds fengycin B ($C_{16}$, $C_{17}$). The antifungal activity of fraction 8, which was presumed as inturin A, was found to be stable after the pH, heat or proteolytic enzyme treatment, but it was unstable at 50-$70^{\circ}C$ for 24 hr. The antifungal activity of fraction B, which presumed as surfactins and fengycin A, was found to be stable after the heat treatment, but it was unstable in the pH 3.0 and after the protease (type I) or ${\alpha}$-chymotrypsin treatment. The antifungal activity of fraction C, which was presumed as fengycin A and B, was found to be stable in the pH 3.0-9.0 range and the heat treatment, but it was unstable with the treatment of protease (type I). The amino acid composition of the purified peaks 8-1 and 8-2 were Asx, Tyr, Gln, Pro, and Ser in a molar ratio of 3:1:1:1:1, which showed the same amino acid composition as iturin. From these results, we confirmed that antifungal compounds from B. polyfermenticus CJ6 most likely belonged to iturin A as well as surfactins and fengycins. As lipopeptides are known to act in a synergistic manner, the antifungal compounds from B. polyfermenticus CJ6 might have potential uses in biotechnology and biopharmaceutical applications.

Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for Control of Colletotrichum gloeosporioides

  • Kim, Pyoung-Il;Ryu, Jae-Won;Kim, Young-Hwan;Chi, Youn-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.138-145
    • /
    • 2010
  • A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at $30^{\circ}C$. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. The molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1,080, (b) 1,486, and (c) 1,044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, lie, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A.

Characterization of antimicrobial proteins produced by Bacillus sp. N32 (Bacillus sp. N32 균주가 생산하는 항균 단백질 특성)

  • Lee, Mi-Hye;Park, In-Cheol;Yeo, Yun-Soo;Kim, Soo-Jin;Yoon, Sang-Hong;Lee, Suk-Chan;Chung, Tae-Young;Koo, Bon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • An antagonistic bacterial isolate, that inhibits the growth of plant pathogens, was selected and identified from 5,000 isolates screened from the rhizosphere of various crop plants. An isolate Bacillus sp. N32, tested against Colletotrichum gloeosporioides causing anthracnose disease in hot pepper, produced both a heat resistant antifungal protein and a heat sensitive antifungal protein. The heat resistant protein was partially purified by Ammonium sulfate fractionation and gel filtration chromatography. The bioautography showed that the proteins possessed high antifungal activity. The biosynthetic gene cluster responsible for the heat resistant antifungal protein was cloned from cosmid library using DNA probe obtained from PCR product with the primers targeting the conserved nucleotide sequence of the synthetic genes reported earlier, Most of the clones obtained showed higher homology to fengycin antibiotic synthetic gene family reported earlier. On the other hand, the heat sensitive protein was isolated from SDS-PAGE and electroblotting to determine the N-terminal amino acid sequences. The heat sensitive antifungal protein gene was cloned from the ${\lambda}-ZAP$ libraries using a DNA probe based on the N-terminal amino acid sequences of the heat sensitive protein. We are contemplating to clone and sequence the whole gene cluster encoding the heat sensitive protein for further analysis.

Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae

  • Li, Xing-Yu;Mao, Zi-Chao;Wang, Yue-Hu;Wu, Yi-Xing;He, Yue-Qiu;Long, Chun-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 ${\mu}g/ml$) were used to treat the resting spores of P. brassicae ($10^7/ml$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm ($A_{260}$) and at 280 nm ($A_{280}$) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.

Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth (식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징)

  • Kim, Kang Min;Liu, Jie;Go, Youn Suk;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.910-916
    • /
    • 2015
  • Scientists have recently shown an interest in the characteristics of Bacillus mojavensis strains because of their increasing use in plants as a defense against diseases and mycotoxins. We have shown here that B. mojavensis KJS-3 possesses the typical characteristics of B. mojavensis strains including a strong resistance to high temperatures (≤50℃), tolerance to high salt concentrations (7% NaCl), ethanol tolerance (40% ethanol), and pH range for growth (pH 5-9). B. mojavensis KJS-3 has been used for the production of cyclic lipopeptides including important antifungal substances such as surfactin, iturin, and fengycin. Polymerase chain reaction analysis in this study showed that B. mojavensis KJS-3 can be used for the production of fengycin and the findings of LC-MS/MS analyses suggest that B. mojavensis KJS-3 can be used to produce iturin and surfactin. Antifungal activity analys is confirmed that B. mojavensis KJS-3 has antifungal effects on Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, and Colletotricum goeosporioides. A microscopy assessment of the roots of wild ginseng plants planted together with B. mojavensis KJS-3 revealed that the roots contained B. mojavensis KJS-3, confirming the bacteria to be a plant growth promoting endophyte (PGPE) which acts against plant diseases and mycotoxins. Our findings lead us to conclude that B. mojavensis KJS-3 can be produced at an industrial level as a microbial pesticide or microbial fertilizer.

Isolation and Characterization of Three Kinds of Lipopeptides Produced by Bacillus subtilis JKK238 from Jeot-Kal of Korean Traditional Fermented Fishes (한국 전통젓갈에서 분리한 Bacillus subtilis JKK238 균주 유래 세 종류 Lipopeptide의 분리 및 특성)

  • Yoon Sang-Hong;Kim Jung-Bong;Lim Yoong-Ho;Hong Seong-Ryeul;Song Jae-Kyeung;Kim Sam-Sun;Kwon Soon-Wo;Park In-Cheol;Kim Soo-Jin;Yeo Yun-Soo;Koo Bon-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2005
  • About seven hundred bacterial strains were collected from Jeot-Kal, a Korean traditional fermented fishes, in various Korean districts. One of the strains designated JKK238 has its ability to antagonize in vitro the growth of a wide variety of plant pathogenic fungi responsible for diseases of economical importance. The JKK238 strain was isolated from Oh-Jeot, a kind of fermented shrimps, of Kangkyeung in Korea, and was identified as Bacillus subtilis based on its physiological characteristics, fatty acids compositions of cellular wall, and 16S rDNA sequence analysis. We isolated simply antimicrobial lipopeptides (AMLP) by $25\%$ ammonium sulfate precipitation of 3 days-old tryptic soy broth cultures of the JKK238 strain. Further analysis of AMLP revealed that B. subtilis JKK238 produces a wide variety of antifungal lipopeptide isomers from the iturin, fengycin and surfactin families simultaneously. Above results indicate that the JKK238 strain can be added to the limited number B. subtilis strains reported to co-produce the three kinds of lipopeptide families.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF