• 제목/요약/키워드: ferro-cement

검색결과 16건 처리시간 0.026초

Ferro-cement Boat 건조 보고 (State-of-the-Art Review of Ferro-cement Boat)

  • 박선영
    • 대한조선학회지
    • /
    • 제8권1호
    • /
    • pp.103-118
    • /
    • 1971
  • Ferro-cement is a composite material made of portland cement mortar and wire(or chicken wire) reinforcement. In most cases, as a shipbuilding material, reinforcing steel rods and steel pipes are also used. This report will review the technique of ferro-cement boat building and will guide the working details. Beyond these, this report will present some test results of the ferro-cement test pannels and will compare those with the other well known shipbuilding material. As a matter of fact ferro-cement application to the shipbuilding material is quite not a new theory. There were already lots of case studies and actual ship building applications. But the technique to do this is not easily available to the interested persons and amateur shipbuilders. Therefore this report will stress most its "state-of-the-art review" and give kind guidance in using ferro-cement as a shipbuilding material. For the more interested research worker, technical references as much as listable are printed in the bibliography section on this report.

  • PDF

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

페로니켈슬래그를 잔골재로 사용한 비소성 시멘트 모르타르의 강도 특성 (Strength Characteristics of Non-Sintered Cement Mortar Utilizing Ferro-Nickel Slag as Fine Aggregate)

  • 류지수;장경수;나형원;형원길
    • 한국건축시공학회지
    • /
    • 제23권4호
    • /
    • pp.359-367
    • /
    • 2023
  • 본 실험에서는 포틀랜드 시멘트와 모래를 비소성 시멘트와 페로니켈슬래그로 대체 사용하여 친환경 시멘트 모르타르를 제작하였다. 페로니켈슬래그가 적용된 비소성 시멘트 모르타르의 강도 특성을 파악하기 위해 골재 종류와 양생방법을 구분하였다. 휨 및 압축강도 시험 결과, 페로니켈슬래그가 적용된 비소성 시멘트 모르타르의 강도는 Plain과 증기양생을 실시한 비소성 시멘트 모르타르의 강도보다 높았다. 이는 페로니켈슬래그의 입도, 밀도 및 흡수율 특성에 따른 강도 향상 효과로 판단된다. 모르타르의 XRD 분석 결과, 페로니켈슬래그에 포함된 MgO 성분이 복합 산화물 형태로 존재하며, 이를 통해 페로니켈슬래그가 적용된 비소성 시멘트 모르타르의 안정적인 강도 발현을 확인하였다.

비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안 (Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar)

  • 장경수;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF

저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구 (An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement)

  • 조병완;윤광원;김헌;박진모
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권6호통권58호
    • /
    • pp.135-147
    • /
    • 2009
  • 본 논문에서는 저열포틀랜드 시멘트와 steel aggregates인 Ferro-Silicon, 실리카흄, 충전재로서 미세 석영과 고강도화에 따른 취성파괴 문제를 개선하기위해 강섬유를 사용하여 압축강도 400MPa이상의 초고강도 분체 콘크리트를 개발 하고자 하였다. 콘크리트의 초고강도화의 영향을 고려하여 물-시멘트비 저감이 가능한 저열포틀랜드 시멘트와 비교대상으로 보통포틀랜드 시멘트를 사용하고, 골재 대체 재료로 Ferro Silicon을 각각의 배합비, 양생조건을 달리하여 압축강도를 비교분석 하였다. 초고강도 콘크리트는 보통콘크리트와 달리 사용재료의 영향이 대단히 중요하며, SEM 촬영결과 Type III, Type IV의 C-S-H수화물이 비교적 많이 생성되었고, 고온고압양생으로 토버모라이트와 조놀라이트가 생성된것을 확인 하였다. 또한 골재의 세립화, 분체의 치밀충전화 및 반응성 재료의 사용으로 인해 페이스트가 고강도화 되고, 강섬유를 사용하여 인성을 보강하므로써, 28일 압축강도 420Mpa의 초고강도 분체콘크리트를 성공적으로 개발 하였다.

페로니켈 슬래그 골재를 활용한 비소성 시멘트 모르타르의 강도 특성 (Strength of Non-Sintered Cement Mortar Using Ferro-nickel Slag Aggregate)

  • 윤민식;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.17-18
    • /
    • 2022
  • Carbon dioxide emissions in the construction sector account for 38% of all industries, and environmental destruction is occurring due to indiscriminate use of natural resources. The purpose of this study is to develop by-product aggregate Non-Sintered Cement(NSC) that can replace sand used as natural aggregate and Portland cement. Therefore, Ground Granulated Blast Furnace Slag, Type C Fly Ash and Type F Fly Ash are used to replace cement, and water granulated ferro-nickel slag(FNS) is used to replace aggregate. The flow, compressive strength and flexural strength of the formulation using sand as an aggregate and the formulation replacing 100% FNS were compared. As a result of the experiment, the formulation using FNS had higher overall strength than the formulation using sand, and as the substitution rate of Type C fly ash increased, the strength was the best. Formulation using FNS is more fluid than using sand. Through this study, we show the possibility of 100% substitution of FNS and its applicability to secondary concrete products of by-product aggregate NSC.

  • PDF

페로니켈 슬래그 미분말의 분말도 변화에 따른 모르타르의 건조수축 및 압축강도 특성 (Drying Shrinkage and Compressive Strength Properties of Mortar by the Blaine of Ferro-Nickel Slag Powder)

  • 김영욱;김도빈;김정현;반준모;최세진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.98-99
    • /
    • 2017
  • This study investigated the drying shrinkage and compressive strength properties of mortar by the blaine of ferro-nickel slag powder to estimate the applicability of ferro-nickel slag powder for cement replacement materials. As a test result, the blaine of ferro-nickel slag powder increased, the compressive strength increased and the shrinkage rate decreased.

  • PDF

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.

새로운 선재(船材)로서의 Mesh Reinforced Cement (Mesh Reinforced Cement as New Shipbuilding Material)

  • 유준호;김훈철
    • 대한조선학회지
    • /
    • 제9권1호
    • /
    • pp.21-31
    • /
    • 1972
  • When one speaks of a concrete ship, most people have an impression of heavy solid rough edged masses of concrete very unlike anything floatable. In the form represented by what is called "MRC", concrete does, however, become light, homogeneous, elastic, resilient, and above all strong still retaining the basic benefit of inexpensive well known concrete properties. The fundamental principal behind this material as a new shipbuilding material is based on the development of "ferro-cement" in the early 1940s by an Italian Engineer Pierre Luigi-Nervi. The "MRC" or Mesh Reinforced Cement has been studied by Korea institute of Science and Technology in connection with a research project "The Small Ship Construction Utilizing Domestic Materials And Its Economic Analysis," of which reports have been issued previously. In this exporsition, some of the basic qualities of "MRC" are discussed in general terms.

  • PDF

페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가 (Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor)

  • 조봉석;김원기;황인성;구경모
    • 한국건축시공학회지
    • /
    • 제19권2호
    • /
    • pp.105-112
    • /
    • 2019
  • 페로니켈슬래그 잔골재는 천연 잔골재와 유사한 특성이 있어 국내 외적으로 콘크리트 구조물에 사용되고 있으나 그 용도와 연구의 영역이 한정적이다. 이에 본 연구에서는 FNS의 활용성 확대와 모르타르제품의 성능개선을 목적으로 바닥용 건조모르타르에 대한 FNS의 적용성을 검토하고자 하였다. 실험 결과, FNS는 흡수율이 낮고 구형의 입형이며 표면이 유리질 피막의 특성이 있어 모르타르의 플로을 향상시켰다. 또한 골재 자체의 높은 강성은 몰탈 압축강도의 향상 및 수축저감 효과를 나타내어 균열저감 등의 품질향상에 기여할 것으로 판단된다. 뿐만 아니라 천연 잔골재를 사용한 모르타르와 비교하여 FNS를 적용하는 경우 동등수준 이상의 충격음 차단성능을 확보할 수 있었다.