• 제목/요약/키워드: fibre reinforced plastics

검색결과 14건 처리시간 0.021초

Nonlinear analysis of fibre-reinforced plastic poles

  • Lin, Z.M.;Polyzois, D.;Shah, A.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.785-800
    • /
    • 1998
  • This paper deals with the nonlinear finite element analysis of fibre-reinforced plastic poles. Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite element model based on the theory of shell of revolution is developed. Several aspects of the implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced plastic poles.

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • 제6권4호
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

연속발진 레이저에 의한 공기 유동에 노출된 유리섬유 강화 플라스틱 손상효과 (Damage Effect on Glass Fibre Reinforced Plastics under Airflow by a Continuous Wave Laser)

  • 이광현;신완순;강응철
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.293-299
    • /
    • 2015
  • We analyzed the damage effect on Glass Fibre Reinforced Plastics(GFRP) under air flow by irradiation of continuous wave near-IR laser. Damage process and temporal temperature distribution were demonstrated and material characteristics were observed with laser intensity, surface flow speed and angle. Surface temperature on GFRP rapidly increased with laser intensity, and the damaged pattern was different with flow characteristics. In case of no flow, penetration on GFRP by burning and flame generation after laser irradiation was appeared at once. GFRP was penetrated by the heat generated from resin ignition. In case of laser irradiation under flow, a flame generated after burning extinguished at once by flow and penetration pattern on GFRP were differently shown with flow angle. From the results, we presented the damage process and its mechanism.

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

Mechanical properties of thin-walled composite beams of generic open and closed sections

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.591-620
    • /
    • 2005
  • A general analytical model for thin-walled composite beams with an arbitrary open/(or/and) closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are defined in the function of the geometry and the material properties of the section. A program "fungen" and "clprop" are developed in Fortran to compute all the mechanical properties and tested for various isotropic sections first and compared with the available results. The locations of mechanical centre of gravity and mechanical shear centre are given with respect to the fibre angle variation in composite beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle orientations.

탄소섬유로 강화된 플라스틱 적층 평판의 동특성에 관한 연구 (A study on the Dynamic Characteristics of Carbon Fibre-Reinforced Plastics Plates)

  • 김찬묵;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.137-142
    • /
    • 1990
  • 본 연구에서는 유한요소법을 사용하여 이방성으로 적층된 평판의 고유모드 를 예측하고, 이론적인 예측의 정확성을 연구하기 위해 사변 단순지지의 다 양한 각도로 적층된 정사각형 CFRP평판의 8번째 진동모드까지 실험적인 결 과와 비교하였다. 이 연구에서 사용된 모든 평판은 중앙면에 대칭이며, 이것 은 Bundling-stretching coupling을 제거하기 위해서이다. 그러나 만일 비대 칭적으로 적층된 평판이라면 이 효과를 포함한 해석이 되어야 할 것이다.

  • PDF

차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구 (The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles)

  • 김영남;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Stability and failure of symmetrically laminated plates

  • Chai, Gin Boay;Hoon, Kay Hiang;Chin, Sin Sheng;Soh, Ai Kah
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.485-496
    • /
    • 1996
  • This paper describes a numerical and experimental study on the stability and failure behaviour of rectangular symmetric laminated composite plates. The plates are simply supported along the unloaded edges and clamped along the loaded ends, and they are subjected to uniaxial in-plane compression. The finite element method was employed for the theoretical study. The study examines the effect of the plate's stacking sequence and aspect ratio on the stability and failure response of rectangular symmetric laminated carbon fibre reinforced plastics composite plates. The study also includes the effect of the unloaded edge support conditions on the postbuckling response and failure of the plates. Extensive experimental investigation were also carried out to supplement the finite element study. A comprehensive comparison between theory and experimental data are presented and discussed in this contribution.

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.