• Title/Summary/Keyword: fibres

Search Result 276, Processing Time 0.031 seconds

Peat stabilization using cement, polypropylene and steel fibres

  • Kalantari, Behzad;Prasad, Arun;Huat, Bujang B.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.321-335
    • /
    • 2010
  • This article describes a laboratory research on stabilizing tropical peat using ordinary Portland cement (OPC) as a binding agent, and polypropylene and steel fibres as chemically inert additives. California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were carried out to evaluate the increase in the strength of the stabilized samples compacted at their optimum moisture contents and air cured for up to 90 days. The results show that the UCS values of stabilized peat samples increased by as high as 748.8% by using OPC (5%), polypropylene fibres (0.15%), and steel fibres (2%). The CBR values of the samples stabilized with OPC (5%), polypropylene fibres (0.15%), and steel fibres (4%) showed an increase of as high as 122.7%. The stabilized samples showed a shrinkage in volume upon air curing and this shrinkage was measured by an index called, volume shrinkage index (VSI). The highest VSI recorded was 36.19% for peat without any additives; and the minimum was 0% for the sample containing 30% OPC, 0.15% polypropylene fibres and 2% steel fibres. The technique of stabilizing peat with OPC, polypropylene and fibres, coupled with air curing, appears to be cost-effective compared with other frequently used techniques.

INFLUENCE OF BASALT FIBRES ON THE PROPERTIES OF FLY ASH BASED GEOPOLYMER BINDER

  • Temuujin, J.;Minjigmaa, A.;Davaabal, B.;Darkhijav, B.;Ruescher, C.H.
    • Particle and aerosol research
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 2016
  • The influence of basalt fibres on the compressive strength of the geopolymer type binders has been studied. For the experiments 2 types of the basalt fibres were used, namely chopped and spooled fibres. Both types of basalt fibres were 7-10 micron thick in diameter and cut into pieces of 6 mm length. The fibres were mixed with 1% weight to the fly ash powder, followed by the addition of the activator solution (8M NaOH). The pastes obtained were cured at $70^{\circ}C$ for 20 h revealing compact bodies. Compressive strength was measured after 7 days and microstructure observation performed with SEM. The cube bodies ($2{\times}2{\times}2cm$) reveal compressive strength of 47.25(4.03) MPa, while it decreased to 34.0(9.05) MPa in spooled basalt fibres and to 17.33(5.86) MPa in the chopped basalt fibres containing binder, i.e 76% and 36% of the strength without fibres, respectively. The much weaker compressive strength of the chopped fibres containing binder is related to the absence of significant adhesion between the geopolymer binder and the basalt fibres, forming voids instead. Alkali leaching effect of basalt fibres could probably explain the drop in the compressive strength with spooled and chopped fibres, respectively.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

Effects of Dietary Fibres on Blood Glucose and Liver Glycogen in Rats

  • Al-Okbi, Sahar Y.;Metwalli, O.M.;Abbas, Afaf E.
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.125-127
    • /
    • 1989
  • Effects of three types of dietary fibres on blood glucose and liver glycogen were studied in male rats. The fibres were used as 10% of the diet supplemented from dietary sources, white beans, peas and carrots. The experiment continued for 5 weeks. At the end of the experiment, fasting blood glucose and liver glycogen were determined. The results showed that replacing carrot fibres and pea fibres by white bean fibres produced significant reduction of blood glucose by 28% and 43%, respectively, while exchanging pea fibres by carrot fibres produced no significant reduction of blood glucose gy 20%. Liver glycogen level (mg/100 g liver) was not affected by altering the fibre type in the diet.

  • PDF

Eight new species of two genera Dysidea and Euryspongia (Demospongiae: Dictyoceratida: Dysideidae) from Korea

  • Kim, Young A;Lee, Kyung Jin;Sim, Chung Ja
    • Journal of Species Research
    • /
    • v.9 no.1
    • /
    • pp.56-67
    • /
    • 2020
  • Eight new species of two genera Dysidea and Euryspongia (Demospongiae: Dictyoceratida: Dysideidae) are described from Gageodo, Ulleungdo, Geomundo, and Jejudo Islands, Korea. Four new species of the genus Dysidea are differentiated by the fibre structure, cored detritus, and fibre arrangement. Dysidea mureungensis n. sp. is characterized by the honeycomb shape of surface and no distinction between primary and secondary fibres. Dysidea glavea n. sp. differs by large sands cored in fibres and that the membrane easily separates from fibres. Dysidea geomunensis n. sp. has fibres that are thinner than those of D. glavea n. sp.. Dysidea corallina n. sp. is characterized by folded fan shape and the arrangement of secondary fibres. Four new species of the genus Euryspongia are differentiated by the fibre structure, cored detritus, shape of sponge, and fibre arrangement. Euryspongia radicula n. sp. is very different from other species by having regularly arranged fibres. Euryspongia spina n. sp. has a fence-like skeletal structure. Bridged type secondary fibres are arranged near the surface and web types are at the base of fibres. Euryspongia flabellum n. sp. has a very unique wide, thin leaf-like shape. String-like primary fibres of E. linea n. sp. are very unique and cored with large sized sands.

A Study of Partial Carbonisation for the Development of Pitch Based Carbon Fibres

  • Aggarwal, R.K.;Bhatia, G.;Raman, V.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2004
  • A study of partial carbonisation of green pitch fibres to temperatures in the range of 500-$1000^{\circ}C$ was carried out on three precursors - a neat pitch and two polymer modified pitches, with a view to find out a suitable temperature at which the fibres acquire considerably improved toughness or handleability (compared to that in the green stage) for their subsequent processing into carbon fibres. A partial carbonisation temperature of 500-$600^{\circ}C$ has been identified to result in a remarkable improvement in the toughness/handleability of the fibres in all the three cases. However, from techno-economical considerations, the neat pitch appears to provide the best precursor system for the production of pitch based carbon fibres.

  • PDF

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.

KINETICS OF POLYELECTROLYTE ADSORPTION ON CELLULOSIC FIBRES

  • Lars Wagberg;Sjolund, Anna-Karin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.34-42
    • /
    • 1999
  • The present investigation has focused up on the study of the adsorption of three different molecular mass fractions of a polyDiMethylDiAllylAmmoniumChloride (DMDAAC) (8750(LM\ulcorner), 48000(MM\ulcorner) and 1200000(HM\ulcorner)) on bleached chemical fibres. Both kinetics of adsorption and equilibrium adsorption measurements have been conducted and each adsorption has been measured by polyelectrolyte titration. The results show that the LM\ulcorner polymer can reach all of the charges in the fibre wall whereas the MM\ulcorner and HM\ulcorner can only reach the external surfaces of the fibres. It is also shown that the kinetics of adsorption of the LMw polymer is not at all affected by the presence of a saturated layer of HMw polymer on the surface of the fibres. Finally, the results from the investigation show that it is possible to have full coverage of the external surface of the fibres by a high molecular mass polymer and a full coverage of the internal surface of the fibres with a low molecular mass polymer. This is true if the high molecular masspolymer is added first followed by addition of the low molecular masspolymer.

Influence of Alkali and Silane Treatment on the Physico-Mechanical Properties of Grewia serrulata Fibres

  • JAIN, Bhupesh;MALLYA, Ravindra;NAYAK, Suhas Yeshwant;HECKADKA, Srinivas Shenoy;PRABHU, Shrinivasa;MAHESHA, G.T.;SANCHETI, Gaurav
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.325-337
    • /
    • 2022
  • Grewia serrulata fibres were chemically treated with 3%, 6%, and 9% NaOH for the duration of 4 h. Additionally, the NaOH-treated fibres were also treated with 3 - (trimethoxysilyl) propyl methacrylate (silane). Properties such as density and tensile strength of the treated fibres were compared against the untreated fibres. The highest density was obtained in the case of 9% NaOH + silane treated fibres, which was 26.47% higher than untreated fibres, implying effective removal of hemicellulose. Likewise, the highest tensile strength was also obtained in the case of 9% NaOH + silane treated fibres. The increment observed in the tensile strength of the natural fibres was related to the removal of impurities, hemicellulose, and stress-raisers as well as deposition over the fibre surface that smoothed it. These observations were further validated by estimating changes in chemical constituents due to chemical treatment along with characterization techniques such as scanning electron microscopy and thermogravimetric analysis.

Effect of Sinter Additives on Sol-Gel Derived Alumina Fibres

  • Lakshmi, N.S.;Gnanam, F.D.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.159-163
    • /
    • 2000
  • Alumina fibre has been synthesized successfully by sol-gel technique. Boehmite sol was prepared by hydrolyzing aluminium iso-propoxide and peptizing it with nitric acid. The stable sol thus obtained was used for fibre drawing when their viscosity reached the required value as a result of progress of the hydrolyzation and polycondensation reaction. The fibres dried at 11$0^{\circ}C$ for 12 hours were sintered at 1$600^{\circ}C$ for 5 hours. A reasonable sintered density with better microstructure and strength have been attained using 2 wt% of urea, magnesia and silica as sinter additives. Thermal analysis with sintering additives of 2 wt% and phase determination of the heat treated fibres using XRD and FT IR spectra confirms the phase transitions. The observation of surface and cross-section of the fibres were made using SEM. Fibres of uniform circular cross-section is obtained by fixing the shape in a setting solution.

  • PDF