• Title/Summary/Keyword: filled hydrogel

Search Result 6, Processing Time 0.019 seconds

Influence of Starch Concentration and Mastication on the Lipid Digestion and Bioaccessibility of β-carotene loaded in Filled Hydrogels (베타-카로텐 탑재 하이드로 젤 농도와 저작에 따른 지방소화율과 생체접근율의 변화)

  • Mun, Saehun;Kim, Yong-Ro
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • Purpose: This study was conducted to examine the effects of the starch concentration of filled hydrogel and the addition of ${\alpha}-amylase$ and simulated mastication processing in an oral phase on lipid digestion and ${\beta}-carotene$ bioaccessibility of filled hydrogels. Methods: Lipid digestion and ${\beta}-carotene$ bioaccessibility of the filled hydrogels were measured after the samples were passed through an in vitro gastrointestinal tract model consisting of oral, gastric, and small intestinal phases. Results: The initial rate and final extent of lipid digestion were higher in the filled hydrogels than in the emulsion when the filled hydrogels were treated in an oral phase without simulated mastication processing and addition of ${\alpha}-amylase$, regardless of starch concentration. However, when the filled hydrogels were minced using mortar and pestle for 2 min and were exposed to ${\alpha}-amylase$, the filled hydrogel fabricated with 5% starch showed the lowest lipid digestion rate and extent compared to the emulsion and other filled hydrogels. Bioaccessibility of ${\beta}-carotene$ was higher in the filled hydrogels than in the emulsion, regardless of the digestion method performed in an oral phase and starch concentration. However, there were appreciable differences in bioaccessibility of the filled hydrogels depending on whether or not simulated mastication and addition of ${\alpha}-amylase$ were employed. Conclusion: These results suggested that the rheological properties of initial filled hydrogels and simulated mastication processing in an oral phase plays an important role in determining the lipid digestion and ${\beta}-carotene$ bioacccessibility entrapped within filled hydrogels.

Stability of the enzyme-modified starch-based hydrogel model premix with curcumin during in vitro digestion (효소변형 전분기반 하이드로젤 모델 프리믹스 내 탑재된 커큐민의 소화과정 중 안정성)

  • Kang, Jihyun;Rho, Shin-Joung;Lee, Jiyoung;Kim, Yong-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • In this study, the effect of enzyme-modified starch used in the preparation of filled hydrogel powder loaded with curcumin (FHP) on redispersibility, thermal and UV stability, and curcumin retention during in vitro digestion was investigated. FHP maintained stability without layer separation when redispersed and showed more stability against UVB than the emulsion powder (EMP). There was no significant difference in the chemical stability of curcumin between rice starch-based filled hydrogel powder (RS-FHP) and enzyme-modified starch-based filled hydrogel powder (GS-FHP). However, the gel matrix of GS-FHP maintained greater stability of lipid droplets in the stomach compared to RS-FHP, thereby improving the retention rate of curcumin after in vitro digestion. GS-FHP could be used as a novel material for developing premixes that require stable formulation and maintenance of functional substances, as it can increase the dispersion stability and retention rate of functional substances after digestion.

Morphological Study on PNIPAAm Hydrogel Microspheres Prepared by Using SPG Membrane Emulsification and UV Photopolymerization (SPG 막유화 및 UV 광중합법에 의해 제조된 PNIPAAm 하이드로젤 입자의 형태학에 관한 연구)

  • Lee, Yun Jig;Kim, Mi Ri;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.76-82
    • /
    • 2015
  • W/O emulsions were prepared from the aqueous solution containing NIPAAm, MBA, and APS in the continuous phase of toluene and mineral oil mixture with HMP and Span80 by using SPG membrane emulsification, and followed by the formation of PNIPAAm hydrogel microspheres through UV photopolymerization. As the ratio of mineral oil to toluene increased in the continuous phase, both particle size of the hydrogel increased and density of PNIPAAm polymer in the hydrogel particle increased, and which significantly affected swelling/deswelling ratio ($V/V_o$) with temperature change around VPTT. When the polymerization temperature was below LCST ($20^{\circ}C$), PNIPAAm hydrogel showed filled particle morphology; however, it was turned out to hollow particle morphology with thick shell layer with $40^{\circ}C$. Both density of PNIPAAm and gel content of the hydrogel increased with the increase in MBA concentration.

Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects

  • Da-Na Lee;Jin-Young Park;Young-Wook Seo;Xiang Jin;Jongmin Hong;Amitava Bhattacharyya;Insup Noh;Seong-Ho Choi
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.321-335
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. Methods: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. Results: Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. Conclusions: There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits

  • Kim, Dong-Myong;Kim, Hyun-Cho;Yeun, Chang-Ho;Lee, Che-Hyun;Lee, Un-Yun;Lim, Hun-Yu;Chang, Young-An;Kim, Young-Dae;Choi, Sung-Ju;Lee, Chong-Suk;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.58-70
    • /
    • 2015
  • Injectable RGD-bioconjugated Mussel Adhesive Proteins (RGD-MAPs) composite hydroxypropyl methylcellulose (HPMC) hydrogels provide local periodontal tissue for bone filling in periodontal surgery. Previously we developed a novel type of injectable self-supported hydrogel (2 mg/ml of RGD-MAPs/HPMC) based porcine nano hydroxyapatite (MPH) for dental graft, which could good handling property, biodegradation or biocompatibility with the hydrogel disassembly and provided efficient cell adhesion activity and no inflammatory responses. Herein, the aim of this work was to evaluate bone formation following implantation of MPH and collagen membrane in rabbit calvarial defects. Eight male New Zealand rabbits were used and four circular calvarial defects were created on each animal. Defects were filled with different graft materials: 1) collagen membrane, 2) collagen membrane with MPH, 3) collagen membrane with bovine bone hydroxyapatite (BBH), and 4) control. The animals were sacrificed after 2 and 8 weeks of healing periods for histologic analysis. Both sites receiving MPH and BBH showed statistically increased augmented volume and new bone formation (p < 0.05). However, there was no statistical difference in new bone formation between the MPH, BBH and collagen membrane group at all healing periods. Within the limits of this study, collagen membrane with MPH was an effective material for bone formation and space maintaining in rabbit calvarial defects.