• Title/Summary/Keyword: film thckness

Search Result 2, Processing Time 0.019 seconds

4.1” Transparent QCIF AMOLED Display Driven by High Mobility Bottom Gate a-IGZO Thin-film Transistors

  • Jeong, J.K.;Kim, M.;Jeong, J.H.;Lee, H.J.;Ahn, T.K.;Shin, H.S.;Kang, K.Y.;Park, J.S.;Yang, H,;Chung, H.J.;Mo, Y.G.;Kim, H.D.;Seo, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.145-148
    • /
    • 2007
  • The authors report on the fabrication of thin film transistors (TFTs) that use amorphous indium-gallium-zinc oxide (a-IGZO) channel and have the channel length (L) and width (W) patterned by dry etching. To prevent the plasma damage of active channel, a 100-nm-thckness $SiO_{x}$ by PECVD was adopted as an etch-stopper structure. IGZO TFT (W/L=10/50${\mu}m$) fabricated on glass exhibited the high performance mobility of $35.8\;cm^2/Vs$, a subthreshold gate voltage swing of $0.59V/dec$, and $I_{on/off}$ of $4.9{\times}10^6$. In addition, 4.1” transparent QCIF active-matrix organic light-emitting diode display were successfully fabricated, which was driven by a-IGZO TFTs.

  • PDF

Application of the modified fast fourier transformation weighted with refractive index dispersion far an accurate determination of film thickness (굴절률 분산을 반영한 고속 푸리에 변환 및 막두께 정밀결정)

  • 김상준;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.266-271
    • /
    • 2003
  • The reflectance spectrum of optical films thicker than a few microns shows an intensity oscillation due to interference. Since the spectral period of the oscillation is inversely related to film thickness, the thickness of an optical film can be determined from the spectral frequency of the oscillation. For rapid data processing, the spectral frequency is obtained by use of a Fast Fourier Transformation technique. The conventional method of applying a Fast Fourier Transformation to the reflectance spectrum versus photon energy is modified so as to clear the ambiguity in choosing the proper effective refractive index value and to prevent the broadening of the Fourier transformed peak due to the refractive index dispersion. This technique of modified Fast Fourier Transformation is suggested by the authors for the first time to their knowledge. From the analysis of the calculated reflectance spectrum of a 30-${\mu}{\textrm}{m}$-thick dielectric film. it is shown to improve the accuracy in determining film thickness by a great amount. The improved accuracy of the modified Fast Fourier Transformation is also confirmed from the analysis of the reflectance spectra of a sample with 80-${\mu}{\textrm}{m}$-thick cover layer and 13-${\mu}{\textrm}{m}$-thick spacer layer on a PC substrate.