• 제목/요약/키워드: fine particulate

검색결과 436건 처리시간 0.035초

Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측 (Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method)

  • 강태천;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

국내 산업 및 시도별 대기오염물질 배출량자료를 이용한 미세먼지 형성 가능성 및 인체 호흡기 영향 평가추정 (Assessment and Estimation of Particulate Matter Formation Potential and Respiratory Effects from Air Emission Matters in Industrial Sectors and Cities/Regions)

  • 김준범
    • 대한환경공학회지
    • /
    • 제39권4호
    • /
    • pp.220-228
    • /
    • 2017
  • 많은 산업 및 도로이동오염원 등으로부터 발생되는 미세먼지는 인간건강과 호흡기에 큰 영향을 미치고 있으며 이에 대한 중요성이 점차 증가하고 있다. 세계보건기구(WHO)에서도 미세먼지($PM_{10}$) 및 초미세먼지$PM_{2.5}$)를 석면 및 비소 등의 물질과 같은 등급인 1급 발암물질로 지정한 이후로 우리나라에서도 지속적인 관심과 연구를 진행해오고 있다. 현재 환경부와 각 지자체별로 미세먼지 및 대기오염정보를 구축하여 제공하고 있지만, 특히 미세먼지 주의보 및 경보발령에 있어서 미세먼지 $PM_{10}$$PM_{2.5}$ 자료만을 활용하고 있고 미세먼지형성에 영향을 주는NOx, SOx, $NH_3$자료는 활용 및 고려를 하지 않고 있다. 또한 국내 산업별 및 지자체별로 세부적인 미세먼지형성 가능성(particulate matter formation potential) 및 발생되는 미세먼지로 인한 인체호흡기 영향평가(respiratory effects)와 관련된 연구는 많이 진행이 되고 있지 않다. 이에 본 연구의 목적은 국내 11개 산업별 및 시도별로 2001년과 2013년 환경부 및 국립환경과학원에서 제시하고 있는 NOx, SOx, $PM_{10}$, $NH_3$ 자료를 활용하여 미세먼지형성(particulate matter formation potential) 평가와 이로 인한 인체 호흡기 영향을 평가 및 산정하여 비교 제시하고자 하였다. 본 연구결과로는 산업별 및 시도별로 미세먼지형성과 인간건강에 영향을 제시하였으며, 향후 미세먼지 관련 연구에 중요하게 활용할 수 있을 것으로 사료된다.

디젤기관차 엔진에서 배출되는 입자의 특성분석 (An Analysis of Characteristics of Particulate Matter Exhausted from Diesel Locomotive Engines)

  • 박덕신;김태오;김동술
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.133-143
    • /
    • 2003
  • Numerous evidence have been reported that fine particulate matters can play an important role in threatening human health. Recently concerns on fine particle pollution from various engines may require re-examination of particulate emission standards. The particles emitted by most diesel engines are mainly divided into their size ranges such as Dp< 50 nm and 50 nm< Dp< 1,000 nm. In this work, the number concentration and the size distribution of fine particles emitted from an exhaust manifold of a railroad diesel engine were measured under load test conditions using a scanning mobility particle sizer (SMPS). The fine particles observed were within the range of 7 to 304 nm under different load conditions with two different dilution ratios. The fine particles exhibited unique patterns showing bimodal shapes in size distribution.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제19권E3호
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Metal Concentrations in atmospheric particulate from seoul and asan, in Korea

  • Son, Bu-Soon;Yang, Won-Ho;Park, Jong-An;Jang, Bong-Ki;Kim, Jong-Oh;Joon Choc
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.89-93
    • /
    • 2003
  • Daily average concentrations of fine particulates have been measured simultaneously in Seoul and Asan area by using PM minivolTM portable air sampler(Air Metrics, U.S.A) from September 2001 to August 2002. The sampler were analyzed by ICP-OES(inductively coupled plasma optical emission spectrometry, optima 3000DV, Perkin Elmor) to determine the fine particulate concentrations of metallic elements(As, Mn. Ni, Fe, Cr, Cu, Cd, Pb, Zn, Si). The concentration of PM$\sub$2.5/ showed a high trend in the Seoul area. Zn showed a similar distribution ratio for the fine particle in both Seoul and Asan. Mn and Fe, Cr, Cd are highly correlated in the Seoul and Asan area(P<0.05).

  • PDF

도로 발생 분진의 방음벽 충돌 CFD 분석 (Collision CFD Analysis of Noise Barrier of Road-Generated Particulate)

  • 이재엽;김일호
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.31-36
    • /
    • 2017
  • PURPOSES : The computational fluid dynamics of flow and fine particles in a road were set to determine the insert flow and occurrence characteristics. METHODS : The road extension was 100 m with two lanes. A one-ton truck traveled a 50-m distance. After a noise barrier was installed on one side of the road, the flow and a collision analysis were tested. RESULTS : The flow that occurred was 5 m/s beside the vehicle, and fine particulate was $5.0{\times}10^2{\mu}g/m^3$ after 20 m from the exhaust vent. CONCLUSIONS : After a collision analysis of the fine particulate on the noise barrier to find the most suitable position of the filter panel in height, the bottom 1 m was the most optimum position because 88.1% of the distribution was concentrated there.

식품표면에 부착된 미세먼지의 정량법 (An automated determination method of particulate matter on food surface)

  • 박선영;방봉준;임다영;정동화;이동언
    • 식품과학과 산업
    • /
    • 제54권1호
    • /
    • pp.29-33
    • /
    • 2021
  • Particulate matter (PM) is an air pollutant that causes serious environmental problems in Korea and other countries. The annual average PM10 concentration in Korea is around 40 ㎛/㎥, which is more than twice as high as the WHO recommended standard. When consumed with food, fine PM can pose a risk to humans. However, the risk of fine PM has been focused on the risk of fine PM introduced through the respiratory system. We investigated the quantitative measuring methods of PM10 on food surface to identify possible risk analysis of fine PM. The surfaces of food with artificially contaminated PM10 were observed with a scanning electron microscope(SEM). An automatic object-based image analysis was used to analyze the amount and size distribution of particulate matter contained in SEM micrographs.

환기장치와 필터를 활용한 미세먼지 제거특성 조사 (Characterization of Fine Dust Collection Using a Filter Ventilation)

  • 전태영;김재용
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.229-233
    • /
    • 2015
  • 본 연구에서는 폐암을 유발하는 발암물질이며 다양한 문제의 원인이 되고 있는 유해물질인 미세먼지 제거특성을 조사하였다. 변수로는 습도, 초기미세먼지 주입량, 유속을 고려하였다. 실험결과 습도가 높은 경우 제거에 소요되는 시간동안 평균 농도는 낮아지지만, 최종농도에는 큰 차이가 없었다. 세 가지 초기미세먼지주입량의 변화는 모두 비슷한 제거경향을 나타내었다. 또한 유속이 0.6 m/s에서 0.3 m/s로 변할 경우 제거소요시간이 약 1.4배 증가하는 결과가 관찰되었다. 본 연구에서는 습도, 미세먼지 주입량, 유속 중 미세먼지 제거에 가장 큰 변화를 보이는 것은 유속으로 관찰되었다.

미세먼지 여지의 무게 측정을 위한 저비용 계량챔버 개발 및 성능평가 (Development and Evaluation of an Inexpensive Weighing Chamber for Particulate Filters)

  • 박준현;임호진
    • 한국환경과학회지
    • /
    • 제32권2호
    • /
    • pp.131-137
    • /
    • 2023
  • Filter and microbalance sensitivity in measuring fine particulate matter mass is greatly influenced by particulate properties and environmental factors. Temperature and humidity control inside a measuring chamber with a microbalance, and neutralization of static charges on filters are essential for consistent filter weighing. Commercial weighing chambers are expensive with a unit price of tens of millions won. This study developed an inexpensive weighing chamber for weighing fine particulate matter and evaluatedits weighing performance. A microbalance with 1 ㎍ precision was used to measure the weight of a filter. The microbalance was set in a transparent acrylic enclosure (100 × 60 × 65 cm3) equipped with temperature and humidity control equipments. Weighing performance of the chamber was examined using Teflon filters with or without different particulate sample types. Temperature and humidity were maintained at approximately 23.2±1.2 ℃ and 36.2±1.8℃ for 8 days, respectively.

초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구 (Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter)

  • 김기웅
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.