• Title/Summary/Keyword: fining upward

Search Result 5, Processing Time 0.02 seconds

Sedimentary Environments and Geochemical Characters of the Core Sediments Near Naju-Yeongam Area in the Lower Part of the Yeongsan River, Cheonnam, Korea (전남 나주-영암지역의 영산강 하류 시추퇴적물의 퇴적환경과 지구화학적 특성)

  • Eun, Go-Yeo-Na;Koh, Yeong-Koo;Youn, Seok-Tai;Oh, Kang-Ho;Kim, Dong-Ju;Kim, Joo-Yong
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.301-316
    • /
    • 2001
  • To consider the vertical variations of sedimentary environments and geochemical characters in the core sediments in Naju-Yeongam area od the lower part of Yeongsan River, grain-size and metal components of the sediments were analyzed. The sediments are pebble to mud and show fining upward. The core sediments are poorly to very poorly sorted and positively skewed. On the basis of grain size distributions, the sediments of the study areas were thought to have been deposited in a meandering stream. The metallic contents of sediments were presumably controlled by carbonate contents of sediments and weakly controlled by fining upward grain size distribution pattern. Enrichment factors indicating metal concentration in the sediments did not suggest any meaningful concentrations for metallic elements.

  • PDF

Architectural Elements of the Fluvial Deposits of Meander Bends in Midstream of the Yeongsan River, Korea

  • Chung, Gong-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Kim, Ju-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.809-820
    • /
    • 2005
  • The fluvial sequence developed along the channel margin of meander bends in the midstream of the Yeongsan River consists of channel deposits at the bottom and overbank deposits at the top, and shows a fining-upward trend. The fluvial deposits consist of 7 sedimentary facies, and facies association forms 7 architectural elements. The channel deposits formed as channel bar or point bar. The channel bar deposits consisted of architectural element of gravel bedform were formed by channel lag deposits within the channel; whereas, the channel bar deposits consisted of architectural elements of downcurrent-dipping inclined strata sets, cross-stratified and horizontally stratified sets, and horizontally stratified sets were formed by downstream migration of sand wave or downstream transport of sand by traction current in the upper flow regime conditions within the channel. The point bar deposits consist of architectural elements of down current-dipping inclined strata sets, horizontally stratified sets, cross-stratified and horizontally stratified sets, and laterally inclined and horizontally stratified sets. These architectural elements are thought to have been formed by the combined effects of the migration of sand dunes and the formation of horizontal lamination in the upper flow regime plane bed conditions. The overbank deposits consist of the architectural elements of overbank fine and sand sheet and lens. The overbank fines were formed by settling of mud from slackwater during flooding over floodplain whereas the sand sheet and lens were formed by traction of sands introduced episodically fiom channel to the overbank during flooding.

A Study on Characteristics and Burial Ages of Sand Deposits at Hasari, Baeksoo, Yeonggwang (영광군 백수읍 하사리 일대의 사질 퇴적층 특성과 매몰 연대에 대한 연구)

  • Shin, Won Jeong;Yang, Dong Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • To investigate the characteristics of sand sediment topography in the Yeonggwang coastal area of Chonnam and to collect evidence of the past extreme events causing coastal flooding, three sites were surveyed among the sediments of Baeksoo-eup Hassari. In this study, the changes of particle characteristics, chemical composition, and the age of deposition of sediments were investigated. The sediments near Baeksoonam Elementary School at the elevation of 10m near the paleo-coastline are estimated to have been deposited at about 3,400 years ago and the grain size of the upper part of the sandy layer is in the range of $2.47-2.11{\varphi}$. The burial age of the sediment layer at Sadeung junction(BSN-B) was about 100 years. Considering the distance from the current coastline, the sands forming the dune are estimated to have been moved or deposited from the nearby area or the other dune on the front side. The mean grain size is observed to be fining upward. Especially, the mean of the upper part is about $2.3{\varphi}$, which is similar to other survey points. The averaged grain size of the lower part of the BSNC (Hasari-1 Gu) was $2.196{\varphi}$ and the upper part was $2.16{\varphi}$. The sorting showed that the upper part was slightly poorer than the lower, and it was difficult to specify the change of the environment. The burial age of the lower layer, which contains shells, was about 300 years. Considering previous studies, this shell layer is presumed to have formed by coastal flooding, such as a storm surge.

Sedimentology of Inclined Heterolithic Stratification in Sukmo Channel, Kyonggi Bay, Korea - Application to Oil Sand Exploration (경기만 석모수도 수로제방 조간대층에 발달하는 경사이질암상층리의 퇴적학적 연구 - 오일샌드 탐사 적용가능성)

  • Choi, Kyung-Sik;Dalrymple, R.W.;Chun, Seung-Soo;Kim, Sung-Pil;Park, Se-Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.18-26
    • /
    • 2005
  • An occurrence of inclined heterolithic stratification (IHS) is described from a tidal point bar in a 40-m-deep distributary of the macrotidai, Han River delta, Korea. The channel bank demonstrates a convex-upward profile with intermittent presence or wave-formed scarps and terraces near the low-water level. The vertical succession of IHS is approximately 25 m thick and dips into the channel with angles reaching up to $14^{\circ}C$. The IHS overlies 15 m of trough cross-bedded sand deposited in the channel bottom. Even though the channel as a whole is ebb dominated, the preserved cross bedding is predominantly flood directed because the mutually evasive nature of the ebb and flood currents causes the point bar surface to be flood dominated. The IHS itself consists of inter-stratified fine sand, sandy silt, and silt with an fining-upward textural trend. Seasonal discharge variations of the Han River are not obvious in the deposits, because tile large size, distal location, and energetic tidal environment of the studied channel reduces the impart of river-stage fluctuations.

  • PDF

Geochemical Characteristics and Quaternary Environmental Change of Unconsolidated Sediments from the Seokgwan-dong Paleolithic Site in Seoul, Korea (서울 석관동 유적의 미고결 퇴적층의 지구화학적 특성 및 제4기 지표환경변화)

  • Lee, Hyo-Min;Lee, Jin-Young;Kim, Ju-Yong;Hong, Sei-Sun;Park, Jun-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • To understand human activity in the past, the information about past environmental change including geomorphological and climatic conditions is essential and this can be traced by using age dating and geochemical analysis of sediments from the prehistoric sites. The sedimentary sequence of Seokgwan-dong Paleolithic Site located in Seoul was 5m long unconsolidated sediments and consists of lower part bedrock weathering sediments, slope deposits and upper-part fluvial deposits. In this study, upper part sediments were used to reconstruct past environmental change through age dating and various physical and chemical analyses including grain size, magnetic susceptibility and mineral and elements. The fluvial sediments can be divided into 4 units including three organic layers. Grain size analysis results showed that the sediments were very poorly sorted with fining upward features. Magnetic susceptibility was relatively high in the organic layers, indicating environmental changes causing mineral composition change at that times. The mineral and major element composition are similar to Jurassic biotite granite which mainly consists of quartz, K-feldspar, biotite and muscovite. The radiocarbon age of $14,240{\pm}80yr$ BP was obtained from the lower most organic layer of Unit III(O), suggesting that the fluvial sediments formed at least from the early stage of deglacial period after the end of Last Glacial Maximum. Subsequent wet and warm climates and resultant fluvial process including slope sedimentation during the Holocene may have been responsible for the sedimentary sequence in Seokgwan-dong paleolithic site and surrounding area. The observed organic layers suggests frequent wetland occurrence combined with natural levee changes in this area.