• Title/Summary/Keyword: finite element method

Search Result 8,789, Processing Time 0.211 seconds

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

THE ORDER OF CONVERGENCE IN THE FINITE ELEMENT METHOD

  • KIM CHANG-GEUN
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.153-159
    • /
    • 2005
  • We investigate the error estimates of the h and p versions of the finite element method for an elliptic problems. We present theoretical results showing the p version gives results which are not worse than those obtained by the h version in the finite element method.

  • PDF

FETM을 이용한 다자유도 회전체 시스템의 진동해석

  • 김승현;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.818-821
    • /
    • 1995
  • A MDOF vibration analysis of the rotor is performed using combined modeling of transfer matrix method and finite element method(FETM). The method combines the advantages of both matrix. Each rotor is modelled using transfer matrix method and treated one element or several ones. The finite element method is applied in composing a system matrix and finding roots. The method used in this is more efficient than conventional finite element method in saving calculation time and provides good results in complex MDOF rotor model.

  • PDF

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1409-1419
    • /
    • 2017
  • We introduce an extrapolated Crank-Nicolson characteristic finite element method to approximate solutions of a convection dominated Sobolev equation. We obtain the higher order of convergence in both the spatial direction and the temporal direction in $L^2$ normed space for the extrapolated Crank-Nicolson characteristic finite element method.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.295-308
    • /
    • 2017
  • We introduce a Crank-Nicolson characteristic finite element method to construct approximate solutions of a nonlinear Sobolev equation with a convection term. And for the Crank-Nicolson characteristic finite element method, we obtain the higher order of convergence in the temporal direction and in the spatial direction in $L^2$ normed space.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.729-744
    • /
    • 2016
  • A Crank-Nicolson characteristic finite element method is introduced to construct approximate solutions of a Sobolev equation with a convection term. The higher order of convergences in the temporal direction and in the spatial direction in $L^2$ normed space are verified for the Crank-Nicolson characteristic finite element method.

Analysis of Propagation Characteristics of Dielectric Wavetguide by Finite-Element Method (유한요소법에의한 유전체 도파관의 전파특성 해석)

  • 강길범;윤대일;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1137-1144
    • /
    • 1989
  • In this paper, for eliminating the spurious solutions which have been necessarily included in the solutions of earlier vectorial finite-element method, we have proposed the improved finite-element method for the analysis of dielectric waveguides in the three-component magnetic field.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF