• Title/Summary/Keyword: finite element method

Search Result 13,318, Processing Time 0.037 seconds

THE ORDER OF CONVERGENCE IN THE FINITE ELEMENT METHOD

  • KIM CHANG-GEUN
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.153-159
    • /
    • 2005
  • We investigate the error estimates of the h and p versions of the finite element method for an elliptic problems. We present theoretical results showing the p version gives results which are not worse than those obtained by the h version in the finite element method.

  • PDF

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1409-1419
    • /
    • 2017
  • We introduce an extrapolated Crank-Nicolson characteristic finite element method to approximate solutions of a convection dominated Sobolev equation. We obtain the higher order of convergence in both the spatial direction and the temporal direction in $L^2$ normed space for the extrapolated Crank-Nicolson characteristic finite element method.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.295-308
    • /
    • 2017
  • We introduce a Crank-Nicolson characteristic finite element method to construct approximate solutions of a nonlinear Sobolev equation with a convection term. And for the Crank-Nicolson characteristic finite element method, we obtain the higher order of convergence in the temporal direction and in the spatial direction in $L^2$ normed space.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.729-744
    • /
    • 2016
  • A Crank-Nicolson characteristic finite element method is introduced to construct approximate solutions of a Sobolev equation with a convection term. The higher order of convergences in the temporal direction and in the spatial direction in $L^2$ normed space are verified for the Crank-Nicolson characteristic finite element method.

COMPARISON OF FINITE ELEMENT SOLUTIONS WITH THOSE OF ANSYS-FLUENT IN A CONJUGATE HEAT TRANSFER PROBLEM (복합 열전달 해석에서 유한요소 해와 Ansys-Fluent 해의 비교)

  • Jeon, B.J.;Choi, H.G.;Lee, D.H.;Ha, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.86-87
    • /
    • 2011
  • In this paper, a conjugate heat transfer around cylinder with heat generation was investigated. Both forced convection and conduction was considered in the present finite element simulation. A finite element formulation based on SIMPLE type algorithm was adopted for the solution of the incompressible Navier-Stokes equations. We compared the finite element solution with that of Ansys fluent 12.0, in which finite volume method was employed for spatial discretization. It was found that the finite element method gave more accurate solution than Ansys fluent 12.0. Further, it was found that the maximum temperature inside cylinder is positioned at the rear side due to the flow separation.

  • PDF

Modified finite element-transfer matrix method for the static analysis of structures

  • Ozturk, D.;Bozdogan, K.;Nuhoglu, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper the Modified Finite Element-Transfer Matrix Method, which is the combination of Transfer Matrix Method and Finite Element Method, is applied to the static analysis of the structures. In the method, the structure is divided into substructures thus the number of unknowns that need to be worked out is reduced due to the transformation process. The static analysis of the structures can be performed easily and speedily by the proposed method. At the end of the study examples are presented for ensuring the agreement between the proposed method and classic Finite Element Method.

A rp method in finite element analysis (유한요소법에서의 rp형에 관한 연구)

  • 유형선;안상호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.54-60
    • /
    • 1988
  • During recent years, a great deal of interest has emerged on the use of adaptive approaches and a posteriori estimates in finite element method. The results are intended to be used to improve the quality of finite element solution by changing the location of the nodes within a fixed number of degrees of freedom-so called r method-, and by increasing the order of polynomial approximation with the new degrees of freedom-p method. This paper deals with error analysis that contains the basic theory and method of deriving error estimates and adaptive processes applied to finite element solutions underlying the rpm method that is the combination of r and p method of finite element. It is shown that we can obtain more accurate solution by applying the method to the 2-dimensional heat transfer problem.

  • PDF

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

Formulation Method of a Singular Finite Element for Orthotropic Materials and its Application (직교 이방성 특이 유한요소의 구성과 그 응용)

  • Lee, Wan-Keun;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.464-469
    • /
    • 2000
  • In order to analyze effectively the discontinuous parts such as holes or notches included in mechanical structures by the finite element method, a singular finite element for orthotropic materials. is proposed. This singular element is formulated by the Trefftz method and the hybrid variational principles, which the displacements and stresses are simultaneously assumed using the Trefftz functions. Through several numerical tests, it is shown that the proposed singular element is very efficient for the accurate stress analysis of the various types of discontinuous parts.

  • PDF

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF