• Title/Summary/Keyword: finite strip

Search Result 331, Processing Time 0.032 seconds

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.77-91
    • /
    • 2013
  • The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are given in explicit forms. To validate the proposed model and study its performance, numerical examples of some thin-walled sections have been performed and the results obtained have been compared with finite element models and the published ones.

Prediction for Weather Strip Using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 웨더스트립의 특성예측)

  • Jang, Wang-Jin;Han, Chang-Yong;Woo, Chang-Su;Lee, Seong-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1022-1027
    • /
    • 2008
  • TPE is used as alternative for rubber, the best example is the weather strip for automobile. The nonlinear material properties of weather strip were important to predict the behaviors of weather strip. Uniaxial tension and equi-biaxial tension tests were performed to achieve the nonlinear material constant and stress-strain curves. The nonlinear material constant of weather strip is evaluated by using the nonlinear finite element analysis. In this paper, the prediction for weather strip is analyzed by using commercial finite element program, ANSYS. The nonlinear finite element analysis of weather strip is executed to predict the behavior of weather strip for automobile.

AN INTEGRATED FINITE ELEMENT COMPUTER SIMULATOR FOR THE PREDICTION OF ROLL AND STRIP PROFILE IN HOT STRIP ROLLING (열연중 판 및 롤 프로파일 예측 시뮬레이터 개발)

  • 류성룡;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.301-307
    • /
    • 1999
  • A three dimensional finite element-based computer simulator is presented for the analysis of the thermomechanical behaviors of rolls and strip during hot strip rolling. The simulator is capable of predicting the strip profiles in a 4 high mill stand, and in particular, can account for the effect of bender forces and pair cross angles. The structure of the simulator as well as various numerical schemes employed are described. The capability of the simulator is demonstrated through applications to some selected set of process conditions.

  • PDF

Radiation Characteristics of Finite Strip-Grating Loaded Dielectric-Coated Coaxial Waveguide with Finite Periodic Thick Slots

  • Kim, Joong-Pyo;Lee, Chang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.161-165
    • /
    • 2001
  • The radiation characteristics of leaky wave emanated from finite strip-grating loaded dielectric coated coaxial waveguide with finite periodic thick slots are investigated theoretically. The rigorous integral equations are derived for the proposed structure using the courier transform, mode expansion, and sine series expansion of the electric current on metallic strips, and the simultaneous linear equations are obtained. The effects of finite strip-grating loading on a dielectric-coated coaxial waveguide with finite periodic thick slots are examined in terms of radiation characteristics.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

A non-symmetric non-periodic B3-spline finite strip method

  • Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.247-262
    • /
    • 2004
  • In the earlier application of the spline finite strip method(FSM), the uniform B3-spline functions were used in the longitudinal direction while the conventional interpolation functions were used in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method, the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction allows the selective local refinement to improve the accuracy of solution at the connections or at the location of concentrated load. A number of numerical tests were performed to prove the accuracy and efficiency of the present study.

An analytical model for the prediction of strip temperatures in hot strip rolling (열간 압연 중 판의 온도 분포 모델 개발)

  • Kim, J.B.;Lee, J.H.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.97-102
    • /
    • 2009
  • In hot strip rolling, sound prediction of the temperature of the strip is vital for achieving the desired finishing mill draft temperature (FDT). In this paper, a precision on-line model for the prediction of temperature distributions along the thickness of the strip in the finishing mill is presented. The model consists of an analytic model for the prediction of temperature distributions in the inter-stand zone, and a semi-analytic model for the prediction of temperature distributions in the bite zone in which thermal boundary conditions as well as heat generation due to deformation are predicted by finite element-based, approximate models. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

A Integral Model for the Analysis of Strip Temperatures During ROT Cooling in Hot Strip Rolling (ROT 냉각과정의 Strip 두께방향의 열전달 해석)

  • An J. Y.;Hwang S. M.;Sun S. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • A finite element-based, integrated process model is presented for coupled analysis of the thermal and metallurgical behavior of the strip occurring on the run-out-table in hot strip rolling. The validity of the proposed model is examined through comparison with measurements. The models capability of revealing the effect of cooling pattern on strip temperatures and the optimal cooling pattern are demonstrated through a series of process simulation. In order to improve strip shape and control temperature history of thickness direction for strip during ROT cooling.

  • PDF

Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process (냉연 판재의 권취공정에 있어서 장력/열/변형 해석)

  • 정영진;이규택;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅠ: FEM Analysis (열연 공정 정상상태 판 프로파일 예측 - PartⅠ: 유한요소 해석)

  • Lee, J.S.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2016
  • Precise prediction and control of the strip profile is crucial for automatic process set-up and operation of a hot strip mill. In the current study, we present the effect of post-deformation on the steady-state strip profile. The process was simulated by a 3-D elastic-plastic finite element (FE) analysis. Comparisons are made between the strip profile measured at the roll exit and the steady-state strip profile. The results raised an issue with regard to the importance of taking into account the effect of post-deformation.