• Title/Summary/Keyword: flexible electrode

Search Result 311, Processing Time 0.039 seconds

TFD Device with Symmetrical Structure of Flexible Electrode Subject to Flexible Substrate

  • Lee, Chan-Jae;Hong, Sung-Jei;Kim, Won-Keun;Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.32-35
    • /
    • 2002
  • In this work, we test electrode material of TFD (Thin Film Diode) device subject to flexible substrate. Al, that is ductile metal, was proper for flexible electrode to fabricate flexible display. The fabricated devices had symmetric electrode structure on both sides of insulation layer. The electrode was made of ductile Al so as to reduce the mismatch of properties between the electrode and substrate. The TFD device was successfully fabricated applying our own etch-free process. Electrical properties were improved by post-annealing.

Atmospheric Pressure Floating Electrode-Dielectric Barrier Discharges (FE-DBDs) Having Flexible Electrodes (유연전극을 이용한 대기압 부유전극 유전체 장벽 방전 플라즈마)

  • Kim, Jun-Hyun;Park, Chang Jin;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.432-437
    • /
    • 2019
  • An atmospheric pressure floating electrode-dielectric barrier discharge (FE-DBD) system having flexible electrodes was developed and its plasma characteristics was investigated. Polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), and polyethylene terephthalate (PET) were used as flexible dielectrics for flexible powered-electrodes. The optical intensity and electron temperature of the atmospheric pressure FE-DBD plasma increased with the voltage applied to the powered electrode, and increased in the order of PTFE < PDMS < PET at a fixed voltage. This behavior was explained in terms of the change in the capacitance of the flexible dielectrics with the dielectric type and voltage, implying that the plasma characteristics of an atmospheric pressure FE-DBD having flexible electrodes can be controlled by modulating the flexible dielectrics for the flexible powered-electrode and the voltage applied to the powered electrode. Because an atmospheric pressure FE-DBD system can generate a plasma along the curvature of skins, it is expected to have useful applications in plasma medicine.

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes (유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향)

  • Doyeon Im;Byoung-Joon Kim;Geon Hwee Kim;Taechang An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-92
    • /
    • 2024
  • Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible displays

  • Choi, Kwang-Hyuk;Cho, Sung-Woo;Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.605-608
    • /
    • 2008
  • The preparation and characteristics of flexible indium tin oxide electrodes grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible optoelectronics In spite of low a PET substrate temperature, we can obtain the flexible electrode with a sheet resistance of 47.4 ohm/square and an average optical transmittance of 83.46 % in the green region of 500~550 nm wavelength. Both x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis results showed that all flexible ITO electrodes grown on the PET substrate were an amorphous structure with a very smooth and featureless surface, regardless of the Ar/$O_2$ flow ratio due to the low substrate temperature, which is maintained by a cooling drum. In addition, the flexible ITO electrode grown on the Ar ion beam treated PET substrates showed more stable mechanical properties than the flexible ITO electrode grown on the wet cleaned PET substrate, due to an increased adhesion between the flexible ITO and the PET substrates.

  • PDF

Reliability of Metal Electrode for Flexible Electronics (유연성 소자용 금속 전극의 신뢰성 연구 동향)

  • Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Recently, various types of flexible devices such as flexible displays, batteries, e-skins and solar cell panels have been reported. Most of the researches focus on the development of high performance flexible device. However, to realize these flexible devices, the long-term reliability should be guaranteed during the repeated deformations of flexible devices because the direct mechanical stress would be applied on the electronic devices unlike the rigid Si-based devices. Among various materials consisting electronics devices, metal electrode is one of the weakest parts against mechanical deformation because the mechanical and electrical properties of metal films degrade gradually due to fatigue damage during repeated deformations. This article reviews the researches of fatigue behavior of thin metal film, and introduces the methods to enhance the reliability of metal electrode for flexible device.

Comparative Studies on the ECG Using a Floating Electrode and Flexible Electrode (플로팅 전극과 플랙시블 전극의 심전도 비교연구)

  • Shin, Seung-Chul;Lee, Se-Hoon;Kim, Kyung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.301-302
    • /
    • 2011
  • 본 연구에서는 Floating Electrode와 Flexible Electrode를 사용한 심전도 측정결과의 비교연구를 진행하였다. 일반적으로 심전도 측정시 사용되고 있는 Floating Electrode를 이용하여 심전도 측정을 할 경우 비교적 안정적인 데이터를 얻기 용이하다는 장점이 있지만, 여러 개의 전극을 몸에 붙이는 번거로움과 피실험자의 불쾌감 등 단점도 있다. 반면, 본 연구에서 제안하는 방법은 Flexible Electrode를 침대 혹은 의자와 설치하여 무구속적인 측정 방법을 통하여 사용자의 편이를 향상시키고 불편함을 최소화를 목표로 한다. 신호검출의 가능성은 확인하였으며, 향후 검출된 데이터를 이용하여 일상생활을 하면서 건강상태를 모니터링 할 수 있는 헬스 케어 응용 서비스로의 연구를 진행하고자 한다.

  • PDF

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Cu Electrode Fabrication by Acid-assisted Laser Processing of Cu Nanoparticles and Application with Transparent·Flexible Electrode (구리 나노 입자에 산-보조 레이저 공정을 적용한 구리 전극 제작 공정 개발 및 투명·유연 전극으로 활용)

  • Jo, Hyeon-Min;Gwon, Jin-Hyeong;Ha, In-Ho;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.121-121
    • /
    • 2018
  • Copper is a promising electronic material due to low cost and high electrical conductivity. However, the oxidation problem in an ambient condition makes a crucial issue in practical applications. In here, we developed a simple and cost-effective Cu patterning method on a flexible PET film by combining a solution processable Cu nanoparticle patterning and a low temperature post-processing using acetic acid treatment, laser sintering process and acid-assisted laser sintering process. Acid-assisted laser sintering processed Cu electrode showed superior characteristics in electrical, mechanical and chemical stability over other post-processing methods. Finally, the Cu electrode was applied to the flexible electronics applications such as flexible and transparent heaters and touch screen panels.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.