• Title/Summary/Keyword: floating breakwater

Search Result 85, Processing Time 0.029 seconds

Numerical Analysis of the Stress on Floating Breakwater under Various Wave Conditions (파랑작용에 의해 부유식 방파제에서 발생하는 응력해석)

  • CHO WON CHUL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.29-36
    • /
    • 2004
  • Floating breakwaters have been recently studied to reduce the transmission ratio of wave energy. The numerical study shows how wave pressure and stress act on the rectangular floating breakwater under various regular wave conditions. In order to evaluate hydrodynamic pressure on the floating breakwater, the infinite element is applied to the linear wave diffraction and radiation problems. SAP2000, a structural analysis program, is used to evaluate stress on the floating breakwater.

Experiments on Tension Characteristics of Perforated-type Floating Breakwaters (유공형 부방파제의 장력특성에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF

Wave Screening Performance Using Floating and Submerged Breakwaters (부유식방파제와 잠제를 이용한 파랑 차단 성능 연구)

  • Won Chul Cho;Jin Won Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.224-231
    • /
    • 2003
  • In this study, the hybrid breakwater system - a breakwater system combining the floating breakwater with the submerged breakwater - is used to improve the wave screening performance that may not be achieved by using the floating breakwater or the submerged breakwater, separately. Two-dimensional finite element method is used for numerical analysis and the wave reflection ratio and the wave transmission ratio are analyzed for the proposed case. In case of using the hybrid breakwater system, wave screening performance is more effective than in case of using the floating breakwater or the submerged breakwater, separately. It also shows an effective wave screening on the long wave period and an advanced wave screening performance with low height of the submerged breakwater.

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

A Study on the Long-Wave Effective Floating Breakwater I: On Trapezoid and Prominence Cross Section (장주기파에 효율적인 부유식방파제에 대한 연구 I: 사다리꼴과 요철 단면형상에 대하여)

  • 김도영;안용호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • In this paper, trapezoid sections and prominence sections were examined to improve the performance of floating breakwater in long waves. The linear potential theory is used and the boundary element method with a matching boundary is employed for numerical computation. The effects of the side slope of the trapezoid section and the geometry ratio of the prominence section on the floating breakwater were examined. It was found that trapezoid sections show lower transmission coefficients than the rectangular sections in the long wave range. In prominence sections the size of the sides are more important than the size of the top. Proper choices of the pontoon type geometry may move the local minimum point of the wave transmission coefficient toward the longer wave ranges and improve the performance of the floating breakwater in the long wave range for a given wave period.

  • PDF

Numerical Analysis of Three-Dimensional Wave Transformation of Floating Breakwater Moored by Catenary (Catenary 계류된 부방파제의 3차원 파랑변형에 관한 수치해석)

  • KIM DO-SAM;CHOI NACK-HOON;YOON HEE-MYUN;SON BYOUNG-KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.241-248
    • /
    • 2004
  • In general, the salient features if the floating breakwater have excellent regulation of sea-water keeping the marine a1ways clean, up and dorm free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth, This study discusses the three dimensional wave transformation of the floating breakwater moored by catenary. Numerical method is based at the Green function method and eigenfunction expansion method. The validity of the present is confirmed by comparing it with the result of Ijima et a1.(1975) fer tensile maxed floating breakwater. According to the numerical results, drift and width of the floating breakwater affect at the wave transformation greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater.

  • PDF

Flow Pattern around Floating Breakwater Using PIV Technique

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.11-20
    • /
    • 2010
  • The purpose of this study is the investigation of the wave interaction with the rectangular floating breakwater. The flow profile obtained by PIV technique is represented to understand the vortical flow due to the wave interaction with a rectangular floating breakwater in the roll motion and the fixed condition. Also, the transmission coefficients are compared in both conditions over the extensive wave periods, which represent the performance of breakwater to attenuate the incoming waves. These results would be applied to design the floating breakwater having the mooring system to improve its performance for a certain wave period.

Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers (말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구)

  • 김도삼;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • In general, the salient features of the floating breakwater have excellent regulation of sea-water keeping the marine always clean, up and down free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth. This study discusses the three dimensional wave transformation of the floating breakwater moored by piers, and its dynamic response numerically. Numerical method is based on the boundary integral method and eigenfunction expansion method. It is known that pier mooring system has higher absorption of wave energy than the chain mooring system. Pier mooring system permit only vertical motion (heaving motion) of floating breakwater, other motions restricted. It is assumed in the present study that a resistant force as friction between piers and floating pontoon is not applied far the vertical motion of the floating breakwater. According to the numerical results, draft and width of the floating breakwater affect on the wave transformations greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater, And the vertical motion come to be large for the short wave period.

Wave Control Performance of Moored Pontoon-Type Floating Breakwater (계류된 사각형 부유식 방파제의 파랑제어성능)

  • Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.35-44
    • /
    • 2002
  • In this paper, the analytic studies on the wave control performance of moored pontoon-type floating breakwater are presented. A two-dimensional eigenfunction expansion method is adopted to study the motion responses and the transmission coefficients of pontoon-type floating breakwater in beam waves. The stiffness coefficients of mooring line are idealized as linear elastic spring. Comparison of the analytical results with a numerical results (FEM) shows good agreement over a wide range of frequencies. The performance of mooed pontoon-type floating breakwater is tested with various design parameters such as sectional geometry, mooring line characteristics and wave frequencies. It is found that the properly designed floating breakwater can be an effective wave control structure.

  • PDF

A Study on Tranquility by the Development of New Type Floating Breakwater (신형식부방파제의 개발과 정온도에 관한 연구)

  • Lee, Hyun Jin;Kim, Do Sam;Shin, Moon Seup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.154-164
    • /
    • 2013
  • In this study, a new type floating breakwater was proposed to improve the capability of wave attenuation compared with the existing floating breakwater in Wonjun Port, which is located in Masan City, Korea. In order to develop the optimal design, many different configurations considering the shape and location of vertical barrier and horizontal plate were examined based on the shape of existing floating breakwaters in Wonjun and Tongyeong Port. The analytical and numerical results of the new type floating breakwater showed better performance in long-period wave attenuation than the existing floating breakwater in Wonjun. Therefore, the new type floating breakwater can improve harbor tranquility in Wonjun Port.