• Title/Summary/Keyword: flocculation well

Search Result 40, Processing Time 0.023 seconds

Defining optimum configuration for secondary clarifier using computer simulation (컴퓨터 시뮬레이션을 이용한 최적 이차침전지 형상 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • Computer simulation has been widely used to design and optimize the operation of wastewater treatment plants since 1980. For secondary clarifiers, the simulation has been a tool to optimize the performance by providing dimensions for flocculation well. However, there has been no attempt to find the optimized geometrical parameters in circular secondary clarifier using simulation tools. In this study, three SVIs (Sludge Volume Indexes), two well types (feed and flocculation wells), 8 SWDs (Side Water Depths) and 9 bottom slopes were variables for simulation. Diurnal inflow and associated MLSS (Mixed Liquor Suspended Solid) concentrations were used for input loadings. When flocculation well was installed, 48% less concentration at lowest ESS (Effluent Suspended Solid) concentrations was produced and the diurnal ESS concentration range had been reduced by 52%. From these results, flocculation well must be installed to produce lower and stable ESS from circular secondary clarifiers. Under same loading conditions with $300m{\ell}$/g of SVI, The lowest ESS was produced when SWD was 4.5m with 4% of bottom slope. Therefore, SWD and bottom slope must not be deeper than 4.5m and must be near 4%, respectively, in circular clarifier with flocculation well to produce the lowest ESS concentration.

Treatment of stock wastewater by flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 축산폐수의 응집처리)

  • 김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • The changes of conventional clarification processe and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. In this context as new flocculation using calcium hydroxide and magnesum sulfate was carried out. The removal of waste matters such as SS, organic matter, COD, nitrogen and phosphorus contained in stock wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 60% of COD in stock watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Treatment of Dyeing Wastewater by Flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 염색폐수의 응집처리)

  • 김재용;서완주
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2002
  • The changes of conventional clarification process and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. The removal of waste matters such as SS, organic matter, color and turbidity contained in dyeing wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 84% of color in dyeing watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

Applications of Yeast Flocculation in Biotechnological Processes

  • Domingues, Lucilia;Vicente, Antonio A.;Lima, Nelson;Teixeira, Jose A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.288-305
    • /
    • 2000
  • A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects-the basics of yeast flocculation, the development of "new" flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous $\beta$-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculating bioreactors and discussing potential new uses of these systems.e systems.

  • PDF

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

Recycling of Wastepaper(12) -Froth-Flotation Conditions for Enhancement of Fines Fractionation Selectivity and Efficiency- (고지재생연구(제12보) -부상부유 처리의 미세분 분급 선택성과 효율 상승을 위한 처리조건-)

  • 여성국;류정용;신종호;송봉근;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • Hydraulic transport of fines up to the surface of flotation cell was supposed to be a mechanism of fines fractionation through the froth-flotation. Efficient fractionation of fines means efficient skimming out of flotation rejects as much as possible with least long fiber loss. The selectivity of fines fractionation was found to be mainly affected by long fibers flocculation degree in this study. Lack of sufficient flocculation of long fibers could lead to extensive loss of long fibers. It was also found that higher flotation flux caused higher flotation reject as well as the increase of long fiber loss, but did not affect the fine content ratio in the flotation reject. We controlled the flotation flux and the stock consistency, and chose a cationic polymer to maximize the flocculation of long fibers and to increase the amount of flotation reject. The highest efficiency of fines fractionation was obtained at 1.3% of stock consistency and at 100L/min of flotation flux in our experimental set up. The cationaic polymer we chose was found to be very effective in fiber flocculation and flotation froth stabilization. New definitions of fractionation efficiency were introduced in this study to compare the results more clearly.

  • PDF

Effects of the Water Quality on the Dispersion Properties of Bentonites Used for Drilling Fluid (시추이수용 벤토나이트의 분산 특성에 미치는 수질의 영향)

  • Akther, Shamima;Hwang, Jin-Yeon;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.21-33
    • /
    • 2007
  • The dispersion/flocculation behavior of bentonite is a major concern in performance of drilling fluid. We studied the dispersion/flocculation characteristics of three commercial bentonites [two CMC (carboxymethyl cellulose) treated and one untreated] in waters of different pHs and salt concentrations. We also examined changes in the viscosity of bentonite suspensions in such waters as a major rheological property of drilling fluid. The dispersion/flocculation behaviors of bentonites were measured by two methods: colorimetric and light scattering method. Light scattering method allows estimating the floc diameter and flocculation rate. The dispersion and flocculation behaviors were diverse with the different bentonites and water qualities. In distilled water, all the bentonites were well dispersed up to first 10 minutes. After that, the CMC-bearing bentonites were flocculated. In salt waters, all the samples were flocculated and the flocculation rate is varied with salt concentration and polymer content. The volume of settled flocs decreased with increasing salt concentration. The flocculation rate and floc diameter increased with decreasing pH of solutions, whereas the volume of settled flocs increased with increasing pH of solutions. The bentonites of fast flocculation behavior had low viscosity. The results of the present study will be helpful in applying bentonites to drilling fluids in diverse environments.

Flocculation Characteristics of Microalgae Using Chemical Flocculants (화학응집제를 이용한 미세조류의 응집 특성)

  • Kwon, Do-Yeon;Jung, Chang-Kyou;Park, Kwang-Beom;Lee, Choul-Gyun;Lee, Jin-Won
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • The aim of the study was to optimize harvesting method for concentrating microalgae from microalgae mass culture. It is well known that the mass density of microalgae is usually very low and these are small size (5-20 ${\mu}m$) in the culture medium. It is essential that microalgae is harvested and concentrated economically for economical biodiesel production from microalgae. In this study, to determine optimized conditions for microalgae harvesting by chemical flocculation. Flocculation of three algae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, was performed using various chemical flocculants, such as inorganic flocculants (aluminium sulfate, aluminium potassium sulfate, ferrous sulfate, ferric sulfate, ferric chloride, calcium hydroxide, sodium carbonate, sodium nitrite, and sodium aluminate), organic flocculant (polyacrylamide), and biopolymer flocculants (chitosan and starch). The results indicated that aluminium based inorganic flocculants is suitable for microalgae harvesting such as Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta. The results also recommended that flocculant doses, agitation speed, agitation time, sedimentation time for economical microalgae harvesting method using chemical flocculants.

Synthesis of Water Soluble Chitosan Derivatives with Quaternary Ammonium Salt and Their Flocculating Behavior (4차 Ammonium 기를 가진 새로운 수용성 Chitosan 유도체의 제조 및 이들의 응집거동에 관한 연구)

  • Kim, Chun-Ho;Jung, Byung-Ok;Choi, Kyu-Suk;Kim, Jae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • N-methyl, N-butyl and N,N-dibutyl chitosan derivatives were prepared by Schiff's base formation and hydrogenation in aqueous media. Furthermore quaternization of the chitosan derivatives was performed in N-methyl-2-pyrrolidone using methyl iodide to obtain water soluble cationic polyelectrolytes. It was confirmed that O-alkylation was occured as well as selective N-alkylation in these reactions. Chitosan and chitosan derivatives with quaternary ammonium iodide showed high flocculation power as the cationic flocculant. When tested on paper mill waste water, they showed high flocculation power, independing of pH range. The flocculation power was increased as the N-alkyl chain length was increased. Among them, N-butyl dimethyl chitosan ammonium iodide showed better flocculation power than chitosan. But, N,N-dibutyl-N-methyl chitosan ammonium iodide showed less flocculation powre than chitosan itself.

  • PDF