• Title/Summary/Keyword: fluid-structure interaction

Search Result 778, Processing Time 0.03 seconds

A study of the triangular cross section type greenhouse using fluid-structure interaction (유체-구조 연성해석을 통한 삼각단면 형상의 비닐하우스에 관한 연구)

  • Lee, GyuHan;Kim, Jeong Jae;Kim, Jeongju;Lee, Sang Joon;Ha, Hojin;Kang, TaeWon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to study the fluid-dynamic and structural characteristics of the conventional greenhouse and to find possible improvement on the current greenhouse. The greenhouse is required to have enough rigidity of the structure while the installation and reinforcement should be as easy as possible. In this study, the structural stability to the snow load was tested through the computational structure analysis based on the building structure standard, and the wind load was computed by computational fluid-structure interaction analysis. The current analysis can be used as a reference data for a new greenhouse and it will be economically viable by reducing installation and maintenance costs.

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

Dynamic Analysis of Rectangular Liquid Storage Containers Considering Fluid-Structure Interaction effects (유체-구조물 상호작용 효과를 고려한 직사각형 단면의 수조구조물의 동적 해석)

  • 박장호;권기준
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.96-101
    • /
    • 2000
  • The effects of internal fluid motion have to be considered in the analysis of liquid storage containers. Therefore this thesis developed a three-dimensional boundary element-finite element method for the analysis of rectangular liquid storage containers. The irrotational motion of inviscid and incompressible ideal fluid is modeled by using boundary elements and the motion of structure by finite elements. Coupling is performed by using compatibility and equilibrium conditions along the interface. Dynamic response characteristics of rectangular liquid storage containers such as sloshing motion, hydrodynamic pressure, displacement by fluid-structure interaction are investigated.

  • PDF

Analysis of Earthquake Responses of a Floating Offshore Structure Subjected to a Vertical Ground Motion (해저지진의 수직지반운동에 의한 부유식 해양구조물의 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan;Jin, Byeong Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.279-289
    • /
    • 2014
  • Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.

A Study on Behavior of Rectangular Liquid Storage Structures (직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구)

  • 박장호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem (비적합 유한요소망에 적용가능한 유체-구조물 연결 요소)

  • Cho, Jeong-Rae;Lee, Jin Ho;Cho, Keunhee;Yoon, Hyejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.

Numerical Study to the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve including Moving Leaflets (판막 거동을 고려한 이엽 기계식 인공심장 판막에서의 맥동유동에 관한 수치해석)

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.504-512
    • /
    • 2002
  • Bileaflet mechanical valves have the complications such as hemolytic and thromboembolic events, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. This fact makes clear the importance of determining the fluid velocity and shear stress characteristics of mechanical heart valves, and requires a detailed understanding of these system properties and further substantial research. The first aim of current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. To accomplish this goal, a finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. Physiologic ventricular and aortic pressure waveforms were prescribed as flow boundary conditions. The interaction of aortic flow and valve motion were computed.

  • PDF