• Title/Summary/Keyword: fluorite mineralized area

Search Result 6, Processing Time 0.018 seconds

Evolution and Mineralizations in the Ockcheon Geosynclinal Zone (옥천지향사대(沃川地向斜帶)의 진화(進化)와 광화작용(鑛化作用))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.4 no.2
    • /
    • pp.77-90
    • /
    • 1971
  • About four hundred deposits of iron, talc, fluorite, tungsten, molybdenum, lead, zinc and other polymetallic mineral deposits were plotted on the Ore Distribution Map of the Ockcheon Geosynclinal Area. These mineral deposits plotted on the map can be divided into the several metallogenic zones by the consideration of their geologic background including the sedimentary and tectonic cycles and the igneous activities in the geosynclinal evolution, as follows: a. Chungju iron and talc zones. b. Cheong-san copper bearing iron sulphide zone c. Kumsan-Muju fluorite-polymetallic zones. d. Cheong-an Puyong and Ein Suckseong gold zone e. Hwang-gan Seolcheon and Sangju gold zones. Chungju iron zone originated in the iron bed in the Kemyongsan Series corresponding to the Pre-Ockcheon Cycle of evolution history. In early period of the Ockcheon Cycle, Hyangsanri quartzite and Munjuri phyllitic formation corresponding to the lower terrigenous sequence were not mineralized while the next sequence of the Samsungsan basic igneous-metamorphic formation and the Changri limestone formation were mineralized by the copper bearing iron sulphide and the fluorite-polymetallic deposits respectively. Two generations of the gold zones are recognized. The earlier generation distributes directionaly in the outside of the Ockcheon sedimentary belt was followed by the earlier grantitic invasion of Jurasic in age, while the later generation scatters at random which was related to the nondirectional Cretaceous granitic intrusion of the Post-Ockcheon Cycle. Conclusively speaking, it was disclosed that the endogenic mineralization in the Ockcheon geosyn clinal zone was not conspicuous in its inner sedimentary belt except its limestone area but in its outer peripheral granitic or gneissic zones, and the related igneous activities occured in the Post-Ockcheon Cycle of evolution history.

  • PDF

Geochemistry of Groundwater in Limestone and Granite of Hwanggangri Fluorite Mineralized Area (황강리 형석 광화대내 석회암 및 화강암지역 지하수의 지구화학적 특성)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.486-493
    • /
    • 2002
  • Hydrogeochemical characteristics of groundwater from a limestone and granite area were studied in the Hwanggangri district, where important fluorite ore deposits are distributed. The geochemical properties of groundwater from limestone and granite are commonly characterized as Ca$^{2+}$-HCO$_3\;^-$ and (Ca$^{2+}$+Na$^+$)-HCO$_3\;^-$ type, respectively. Groundwater, contaminated by mine drainage water from the neighboring ore deposits, has not been observed yet. However, fluoride in groundwater exceeding the drinking water permission level is found in the wells located in a Cretaceous granite area. The concentrations of F in the groundwater show a positive relationship with the values of Na, HCO$_3$, Li and pH. This may suggest that the groundwater come from the decomposition of fluoride-bearing silicate minerals within highly differentiated granitic rocks.

Determination of fluoride in fluorite mine wastewater by ion chromatography with post-wash technique (후세척-이온크로마토그래피를 이용한 형석 광산 폐수 중 플루오라이드 정량)

  • Song, Kyung-Sun;Eum, Chul-Hun;Kim, Sang-Yeon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.383-388
    • /
    • 2006
  • Simple post-wash method by ion chromatography (IC) was established for the rapid and precise determination of fluoride ion in wastewater from mine in fluorite mineralized area. High sulfate in sample was retained in a pre-column and less strongly held fluoride ion was transferred to the principal separation system using modified conventional IC with switching technique. An analytical column with high capacity (AS 9 HC) was used as a pre-column to retain the amount of high sulfate. A guard column (AG 14) as a separation column was used to increase the response of fluoride and reduce the system pressure. According to the recovery of fluoride ion with one detector and the observation of sulfate peak with another conductivity detector, the optimum switching time of 10-port chromatographic injector was 4.3 min. The limit of detection (S/N = 3) of fluoride in synthetic solution containing $500mg\;L^{-1}$ sulfate was $2.4{\mu}g/L$, with $25{\mu}L$ sample volume.

Fluorine Distribution and Attenuation of Groundwater within Limestone and Granite from Keumsan-Wanju Fluorite Mineralized Zone (금산-완주지역 형석광화대내 석회암 및 화강암지역 지하수의 불소분포 특성 및 저감방안)

  • Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.105-117
    • /
    • 2001
  • The characteristics of hydrogeochemistry and fluorine distribution in drinking groundwater from limestone and granite were studied in the Keumsan-Wanju area, where major important fluorite-deposits are distributed. The hydrochemical properties of groundwater from studied area arc commonly characterized as $Ca-HC0_3$ water type. However, some of the groundwater samples collected from Jurassic and Cretaceuus granites belong to $Ca-Na-HC0_3 and Na-HC0_3$ type, respectively. The contamination of drinking groundwater by minewater from the nearby fluorite deposits is not found yet. However, groundwater having high F contents up to 1].4 mgll, which is higher than the drinking water limit, is found from the wells located in Cretaceous granite. The tluorine contents in groundwater generally increase with increasing well depth. The concentrations of F in the groundwater show a positive relationship with the values of Na, $HC0_3, Cl. Si0_2$, pH, whereas a negative relationship with Ca. The positive correlation of F-concentrations to major elements ($Si0_2$, Na, CI) and trace elements (Li, B, Rb) may suggest that the groundwater come from the decomposition of tluoride-bearing silicate minerals within highly differentiated granitic rocks, Therefore, wells for drinking water should not be developed or should be drilled within shallow level in the Cretaceous granite region to reduce the F contents in the groundwater.

  • PDF

Microscopic Study of Sangdong Tungsten Ore Deposit, Korea (상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究))

  • Lee, Dai Sung;Kim, Suh-Woon
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.