• Title/Summary/Keyword: flux cored wire

Search Result 54, Processing Time 0.023 seconds

Effects of gas formers on metal transfer of the self-shielded flux cored arc welding (Self-shielded flux cored arc welding시 가스 발생제가 용적 이행 현상에 미치는 영향)

  • 정재필;김경중;황선효
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1985
  • Wire meling characteristics were examined with variation of gas formers such as $MgCO_3, CaCO_3 and Li_ 2CO_ 3$ by self-shielded flux cored arc welding. The flux cored wire of overlap type was welded by DCRP. The results obtainedareas follows. 1) Drop type was observed with no gas former, repelled type with MgCO_3$ added and short circuit type with $Li_2CO_3$ added. The variation of transfer mode was related to the blowing force of $CO_2$ gas and the surface tension of the slag. 2) Droplet size increased with adding gas formers due to the effect of $CO_2$ gas cushion. 3) Core spikes were observed more frequently with increasing the amount of gas formers.

  • PDF

Effect of Preheat Temperature on Diffusible Hydrogen Content in Weld Metal Deposited using Flux Cored Wire (시편 예열 온도가 FCW 용착금속의 확산성 수소량에 미치는 영향)

  • Kim, Dong Yoon;Hwang, In Sung;Kim, Dong Cheol;Kang, Moon Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.18-21
    • /
    • 2014
  • Cold cracking of weldment is one of the most serious welding problems. A sufficient quantity of diffusible hydrogen, a residual stress, and a sensitive microstructure are the causes of cold cracking. Removal of any one of these factors can be used to prevent cold cracking. Application of flux cored arc welding process is increasing due to high productivity and easiness of welding. In addition, to prevent cold cracking in the HAZ or weldment, preheat temperature and interpass temperature have to be controlled. In this study, the effect of preheat temperature on the levels of diffusible hydrogen in the weld metal deposited using flux cored wire was examined. The levels of preheat temperature of base metal specimen were ambient temperature, 50, 100 and $150^{\circ}C$ respectively. The result showed that the increase of preheat temperature was a linear relationship with reduction of diffusible hydrogen content in weldment.

Effects of Fluorides in the Flux Cored Wire on the Oxygen Content of Weld Metal (플럭스 코어드 와이어의 불화물 종류에 따른 용접금속 산소량의 변화)

  • Cha, Joo-hyeon;Bang, Kook-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.615-619
    • /
    • 2019
  • Various fluorides, i.e., CaF2, Na3AlF6, K2SiF6, MnF3, MgF2, were added to the flux cored wire, and their effects on the oxygen content of the weld metal were investigated. The investigation showed that the oxygen content of weld metal was not influenced by the type of metallic elements in the fluoride; rather, it was influenced by the stability of the arc during welding. While the wire containing MgF2 showed the most stable arc and the least amount of oxygen in the weld metal, the wire containing MnF3 showed the least stable arc and the greatest amount of oxygen. Since the deoxidation of the weld metal was not affected by the deoxidation elements, such as Ca and Mg, it was possible to predict the oxygen content of the weld metal by the equilibrium Si-Mn deoxidation thermodynamic model.

Microstructure and Hardness of 1st layer with Crystallographic Orientation of Solidification Structure in Multipass Weld using High Mn-Ni Flux Cored Wire (고(<24%)Mn 플럭스코어드와이어를 사용한 다층 용접 시 초층 응고조직의 결정면방위에 따른 미세조직과 경도)

  • Han, Il-Wook;Eom, Jung-Bok;Yun, Joong-Gil;Lee, Bong-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.77-82
    • /
    • 2016
  • In this study, Microstructure and hardness of 1st layer with crystallographic orientation were investigated about solidification structure in multipass weld using high Mn-Ni flux cored wire. Microstructure of solidification consisted of austenite matrix and a little ${\varepsilon}-phase$ in grain boundaries. Orientation of grains was usually (001), (101), (111). According to crystallographic orientation, morphology of primary dendrite was different. The depletion of Fe and the segregation of Mn, C, Ni, Si, Cu, Cr, O were found along the grain boundaries. The area of segregation was wide with an order of (001), (101), (111) grains. And hardness of grains with crystallographic orientation increased with an order of (001), (101), (111) grains because of the segregation along dendrite boundary.

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

Study on the Addition and the Transfer of Alloying Elements in FCAW (FCAW에 의한 합금 성분의 첨가와 이행에 관한 연구)

  • 김경중;박관호
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 1983
  • The chemical composition of deposit metal by flux cored arc welding can be easily regulated though addition of deoxidizers and alloying elements in cored flux and fluxes of flux coored wire arc analogous to those of coated electrode. It is necessary to investigate the transfer and yield efficiency due to addition of necessary alloy elements in deposit metal. This report is made to intorduce an experimental equation from the relation between welding condition and extent of penetration, deposit metal and weld melt slag and to estimate transfer and yield efficiency of alloy components in fluxes through chemical analysis of deposit metal.

  • PDF

Effects of Heat Inputs on the Mechanical Properties of FCA Weldment of YP 690MPa Grade Steels (항복강도 690MPa급 전자세용 FCA 용접와이어 개발에 있어 용접 입열의 영향 평가)

  • Jo, Young-Ju;Seo, Dae-Gon;Shin, Yong-Taek
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.11-15
    • /
    • 2016
  • YP 690MPa grade steels are used as the main structural steel for offshore structure such as Jack-up Rig and WTIV(Wind Turbine Installation Vessel). Most of welding consumables applied to YP 690MPa grade steels are basic type flux cored wires that shows the poor weldability and not suitable for all position welding. For this reason, welding consumables with rutile type flux system is required. Rutile type flux cored wires show excellent weldability and apply to all position welding. This paper presents the mechanical properties of weld metal with rutile type flux cored wire developed and finally assessed the possibility for application.

Effect of Welding wires on the Contact tip Wear during GMA Welding (GMA용접에서 용접와이어와 콘택트팁의 재질이 마모에 미치는 영향)

  • Kim, Nam-Hoon;Koh, Jin-Hyun;Hwang, Yong-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.683-686
    • /
    • 2011
  • The effect of welding material such as welding wires and materials for contact tip on the contact tip wear was investigated. Two types welding wires such as solid and flux cored wire and a variety of contact tips made of Cu-P, Cu-Cr(0.25%), Cu-Cr(1%) and Cu-Cr-Zr were employed for the comparison of wear resistance. It was found that the wear resistance of contact tips materials was Cu-Cr-Zr, Cu-Cr(1%), Cu-Cr(0.25%), Cu-P in order while the solid wire had a better wear resistance than flux cored wire.

  • PDF