• Title/Summary/Keyword: forced resonance

Search Result 128, Processing Time 0.031 seconds

Analysis of Forced Resonance Characteristics of Electrically Small Dipole Antennas and Its Application to Measurements of Unknown Frequency (전기적 소형다이폴 안테나의 강제 공진특성 해석과 주파수 측정에의 응용 가능성 연구)

  • Ki-Chai Kim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.264-272
    • /
    • 1997
  • This paper presents the analysis of forced resonance characteristics of electrically small dipole antenna loaded with external element and its application to measuring unknown frequencies. The method of moments with Galerkin's procedure is used to determine the current distribution of the antenna. To derive the determinantal equation of resonance lengths at a given frequency, small antennas with the reactance loaded can be treated as a two-port network. Numerical results show that the forced resonance of the electrically small dipole antenna loaded with reactance can be easily obtained by controlling the reactance for the series resonance as well as for the parallel resonance. It is demonstrated that the forced resonance characteristics can also be applied to the measurement of unknown frequencies.

  • PDF

Dynamics of electric system for electromechanical integrated toroidal drive under mechanical disturbance

  • Hao, Xiuhong;Xu, Lizhong
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.189-207
    • /
    • 2009
  • Dynamics of the electric system for the toroidal drive under mechanical disturbance is presented. Using the method of perturbation, free vibrations of the electric system under mechanical disturbance are studied. The forced responses of the electric system to voltage excitation under mechanical disturbance are also presented. We show that as the time grows, the resonance vibration caused by voltage excitation still exists and the vibrations caused by mechanical disturbance are enlarged. The coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed. The conditions of the occurrence of coupled resonance are studied.

A Study on Generating Characteristics of Circular Unimorph-Type Piezoelectric Transducer (원판형 유니몰프타입 압전 트랜스듀서의 발전특성 연구)

  • Park, Choong-Hyo;Kim, Jong-Wook;Jeong, Seong-Su;Chong, Hyon-Ho;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • On this paper, a circular unimorph-type piezoelectric transducer was proposed and studied. The transducer was fabricated by attaching a circular-shaped PZT ceramic to a circular plate of brass and output characteristics of the fabricated transducer were then analyzed and measured by changing driving points where the mechanical vibrations were applied. Two conditions depending on the location of vibration were respectively defined as a center forced model and an edge forced model. The resonance frequency and output voltage of the models were simulated by using ANSYS, a FEM(finite element method) program. Based on the results of the analyses, the vibration experiment was conducted and the output characteristics then measured through measurement equipment. As a result, the maximum output characteristics of two models were respectively generated at each resonance frequency and the resonance frequency of the center forced model was lower than the edge forced model.

Reactance Loaded Dipole Antennal Elements for Beam Tilting with Forced Resonance (리액턴스 장하 강제 공진형 지향성 틸트 다이폴 안테나 소자)

  • 김기채;권익승;서영석;박용완
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.278-285
    • /
    • 2000
  • This paper presents the basic characteristics of the beam tilting dipole antenna element in which one reactance element is used for the impedance matching at the feed point. The radiation pattern is tilted by the properly determined driving point position, and the loading reactance is used to obtain forced resonance without great changes in tilt angle. The numerical results demonstrate that the reactance element should be loaded in the region where the driving point is placed to obtain forced resonance of the antenna with little changes in beam tilt angle. In case the proposed forced resonant beam tilting antenna with $0.8\lambda$ length is driven at $0.2\lambda$ from the center, the main beam tilt angle o.5 57.7 degrees, the highest power gain of 8.6 dB are obtained.

  • PDF

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

Forced Vibration of Car Seat and mannequin System (자동차 시트 및 마네킹 시스템의 강제 진동)

  • Kim, Seong-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.122-132
    • /
    • 2000
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in 'Free Vibration of Car seat and Mannequin System' nonlinear and linear equations of motions were rederived for forced vibration and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests mannequin's head had a lot of problems and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints linear analyses were performed. New sets of linear spring and damping coefficients and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance indicating that this is a feasible method of modeling seated occupants.

  • PDF

Forced Vibration Analysis of Pipe Conveying Harmonically Excited Fluid (조화 맥동 유체를 포함하는 직관의 강제진동응답 해석)

  • 오준석;정의봉;서영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.277-283
    • /
    • 2003
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So it should be also taken into consideration that the effect of pulsating fluid in pipe design. The research of the piping system vibration due to a fluid pulsation has been studied by many people. But almost is dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted.

  • PDF

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao;Quanshui Li
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.

Forced Resonant Type Cutoff Cavity-Backed Aperture Antennas Loaded with a Single External Reactance

  • Kim Ki-Chai;Hirasawa Kazuhiro
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • This paper presents the basic characteristics of a cutoff cavity-backed aperture antenna with a feed post and a parasitic post inserted parallel to the aperture. It is shown that this type of antenna forcibly resonates the cutoff cavity by adding a single external reactance to the parasitic post. The Galerkin's method of moments is used to analyze integral equations for the unknown electric current on each post and the aperture electric field on the aperture. The value of an external reactance for forced resonance is analytically obtained by deriving a determining equation. Also the current distribution on each post, aperture electric field distributions, and the radiation patterns are discussed. The theoretical analysis is verified by the measured return loss and radiation patterns.