• Title/Summary/Keyword: foreign protein

Search Result 297, Processing Time 0.031 seconds

Interaction of the Bacteriophage P2 Tin Protein and Bacteriophage T4 gp32 Protein Inhibites Growth of Bacteriophage T4

  • Jin, Hee-Kyung;Kim, Min-Jung;Park, Chan-Hee;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.724-726
    • /
    • 2001
  • The growth of baceriophage T4 is inhibited by the presence of the tin gene product o bacteriophage P2. The interaction between purified Tin and gp32 proteins was observed using coimmunoprecipitation experiments. The in vivo interaction was confirmed by yeast two-hybrid experiments. A deletion analysis showed that the Asp 163 region of gp32 to DNA substrates was not affected by the presence of Tin, Thus, it would appear that the inhibition of 4 growth by Tin was due to a protein-protein interaction rather than affecting the DNA-binding ability of gp32.

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Construction of 1H-15N Double Resonance Solid-State NMR Probe for Membrane Proteins in Aligned Bicelles

  • Park, Tae-Joon;Kim, Ji-Sun;Um, Seung-Hoon;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1187-1191
    • /
    • 2010
  • $^1H-^{15}N$ heteronuclear dipolar coupling solid-state NMR experiments on lipid bilayer or bicelle samples are very useful for the structural studies of membrane proteins. However, to study these biological samples using solid-state NMR, a specific probe with high efficiency and high capability is required. In this paper, we describe the optimized design, construction, and efficiency of a 400 MHz wide-bore $^1H-^{15}N$ solid-state NMR probe with 5-mm solenoidal rf coil for high power, multi-pulse sequence experiments, such as 2D PISEMA or 2D SAMMY.

Implications of Exonuclease Activity of Bacteriophage P2 Old Protein for Lambda Exclusion

  • Kim, Kwang-Ho;Park, Chan-Hee;Yeo, Hyeon-Joo;Kee, Young-Hoon;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.272-274
    • /
    • 2000
  • Temperate bacteriophage P2 has a nonessential gene called old(overcoming lysoginization defection). In the presence of old, the growth of the host (Escherichia coli) with recBC- genotype is ingibited, and another bacteriophage, lambda, cannot superinfect. The Old protein has been shown to possess an exonuclease actibity. Three mutant P2s(old 1, old 17, old 49) which did gene was coned into expression vectors to produce hexahistidine-tagged proteins. The proteins were affinity-purified and shown to lose its exonuclease activity on both double-stranded and single-stranded DNA substrates. Thus, it was concluded that the lambda exclusion was related to Old's exonuclease activity.

  • PDF

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.