• 제목/요약/키워드: forest stream

검색결과 395건 처리시간 0.025초

일본(日本)에서 한류변(漢流邊)의 환경부원(環境復元) 발전전략(發展戰略)(I) (Strategic Prospects of Environmental Restoration of Stream Side in Japan(I))

  • 박재현;우보명;이헌호
    • 한국환경복원기술학회지
    • /
    • 제3권1호
    • /
    • pp.80-90
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. Since the end of 20th century, the native ecology and landscape of Japan remained only a limited areas such as stream side, water side and forest areas. Therefore, recently the works of forest conservation and erosion control of environmental restoration on stream side tended to increased. The strategic prospects of environmental restoration in Japan were summarized as follows : 1. From the ecological point of view, we have to develop a certain method and technology in construction of forest conservation and erosion control to prevent environmental problem from erosion control works. 2. We have to restore not only a continuity of stream side forest from a primitive area to an estuary but also the stream side forest to preserve and restore a stream side vegetation on a primitive watershed areas. 3. We have to improve a method of construction or removal of a structure which were constructed in the stream to restore a water side environment and an interaction system for an integration on a forest land, stream, and erosion control. Additionally, we have to establish an integrated evaluation method and an enforcement system after investigation of influences on natural environment, stream, and forest etc. 4. We have to conduct an integrated research to investigate the ecosystem of stream side, and construct environmentally friendly water park and erosion control park which considered natural environment and its landscape. Additionally, we need to introduce and adopt a natural style stream construction method to restore a water side areas.

  • PDF

Seasonal Phosphorus Dynamics in a Forest Stream Water Following Different Harvests

  • Park, Byung Bae
    • 한국산림과학회지
    • /
    • 제97권2호
    • /
    • pp.181-186
    • /
    • 2008
  • Even small changes in phosphorus concentrations in stream water could cause eutrophication because of very low level of phosphorus concentrations in natural waters. I investigated the impact of strip cut and clear cut on phosphorus concentrations in stream water at the Hubbard Brook Experimental Forest and investigated stream water phosphorus concentrations as a function of flow rate and season (as well as cutting history). Mean phosphate concentrations in the control (undisturbed forest) increased $1.9{\mu}g\;L^{-1}\;to\;2.6{\mu}g\;L^{-1}$, while strip cut treatment increased phosphate concentrations in stream water $2.2{\mu}g\;L^{-1}\;to\;3.7{\mu}g\;L^{-1}$ during the same period. There was no significant effect of clear cut treatment on phosphate concentrations in stream water. No relationships were found between discharge rate and phosphate concentrations, but the magnitude of fluctuation were increased during two decades in undisturbed forest: $1-5{\mu}g\;L^{-1}$ from 1963 to 1975 and $1-12{\mu}g\;L^{-1}$ from 1983 to 1995. Based on this study, forest harvests with buffer zone will not make a problem by imported phosphate to cause eutrophication in natural water.

일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(IV) (Strategy Prospects of Environmental Restoration of Stream Side in Japan(IV))

  • 박재현;우보명;이헌호
    • 한국환경복원기술학회지
    • /
    • 제3권4호
    • /
    • pp.84-90
    • /
    • 2000
  • The objective of this study was to introduce the current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. 1. In order to change the recent direction of the forest conservation and erosion control projects which are focused on the restoration of stream side ecology, we have to quit the past erosion control policy such as water control purpose, and establish new plans regarding on the forest conservation and erosion control which is considered the regional environmental restoration of watershed. 2. When we restore stream side and river side ecosystem, we should establish restoration plans which can keep the original nature of stream and river. 3. The forest conservation and erosion control construction projects for the restoration of stream and river ecosystem should be planned for the perfect restoration of their ecosystem by way of sustainable maintenance and management. 4. The restoration direction of stream and river ecosystem needs to be planned to restore the diversity of small geographies such as waterway, shoal and puddles rather than flattening of stream bed. 5. The main principle in the restoration of stream and river ecosystem is to accomplish forest conservation and erosion control construction projects which can conserve the existing stream and river ecosystem.

  • PDF

산지계류의 계절적 수온변동 특성 및 영향인자 분석 (Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas)

  • 남수연;최형태;임홍근
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

산림유역내 강우 발생시 계류수질변화와 지중유출수의 기여도 (Change of Stream water Chemistry and Contribution of Subsurface Discharge in Forest Catchment during Storm Events)

  • 김수진;정영호;김경하;유재윤;정창기;전재홍
    • 한국농림기상학회지
    • /
    • 제7권1호
    • /
    • pp.51-56
    • /
    • 2005
  • To understand the chemical changes in the streamwater and contribution of subsurface discharge during the storm event, we analyzed electric conductivity (EC), anions, and cations in Gwangneung deciduous and coniferous forest catchment. The stream water samples were collected three times in 2004 by using an auto-sampler: September 7-9 (E040907-D and -C; where D and C indicate deciduous and coniferous forest catchment, respectively), September 11-13 (E040911-D and -C), and September 16-18 (E040916-D and -C). We found a negative relationship between discharge intensity and EC in streamwater. The E040911 and E040916 showed slack change of stream discharge in comparison to E040907 due to contribution of base flow recharged by much precipitation. Moreover, NO/sub 3//sup -/ concentrations in E040911-C were highest, which may have resulted from forest management such as thinning in 2004. The relationship between pH and alkalinity in stream water showed that much of stream water have been recharged through subsurface. We conclude that subsurface discharge highly influences streamwater quality in a forested catchment, and the seperation of stream water discharge is therefore necessary to sustainable water management.

산림경영기반의 임도개설이 부유사 발생에 미치는 영향 (Effect of forest road establishment based on forest management on occurrence of suspended sediment)

  • 이성기
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.247-255
    • /
    • 2003
  • Forest management starts from forest road facility, which is designated as generation source of muddy water in mountain stream during initial stage of establishment. Therefore, this study reviewed the effect of suspended sediment generated in forest road surface on the muddy water in mountain stream with respect to marsh area of forest. As a result, characteristics of outflow of suspended sediment was understood, and it was judged that generation of suspended sediment due to establishment of forest road is diluted by mountain stream this charged from drainage area so as to have small effect on muddy water in total mountain stream.

일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(V) -한국적(韓國的) 적용(適用)을 중심(中心)으로- (Strategy Prospects of Environmental Restoration of Stream Side in Japan(V) -With a Special Reference to the Application of Korean Style-)

  • 박재현;우보명;권태호;이헌호
    • 한국환경복원기술학회지
    • /
    • 제4권1호
    • /
    • pp.80-89
    • /
    • 2001
  • The objective of this study was to introduce the current status and development strategy for the environmental restoration of stream side in Japan, and to consider the methodology which could be effectively applied to the environmental restoration of stream side in Korea. 1. We should establish a new paradigm of forest conservation and erosion control which can emphasize the restoration of the stream side ecosystem and reduce soil movement in the areas. Also, in the past, the objective of forest conservation and erosion control was to fix soil by constructing permanent structures. The direction of future forest conservation and erosion control needs to be new forest conservation and erosion control technology to prevent large scale soil movement but allow small scale soil movement to conserve sound ecosystem and biotic habitats. 2. In the past, the goal of forest conservation and erosion control planning was to fix the amount of soil movement by constructing permanent facilities. Forest conservation and erosion control planning in the future needs to change the techniques which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively to a small and middle scale's soil movement. Also, it is considered to change erosion control dams from non passing type to passing type. 3. In the point of ecological conservation aspects, we should evaluate the effects of new forest conservation and erosion control methods which are emphasized on the restoration of the stream side ecosystem. Also, forest conservation and erosion control construction projects for restoring stream and river ecosystem should be planned for perfectly restorating their ecosystems by the way of sustainable maintenance and management. 4. The restoration direction of stream and river ecosystems needs to be restoring the diversity of small geographies such as waterway, shoal and puddles rather than flattening stream bed. And the restoration of the stream side ecosystem should provide continuity of the stream side environment which allows desirable biological habitats, and environmentally sound facilities to harmonize with the environment.

  • PDF

산림소유역 유출수의 비강우일 비점오염물질 농도 변화 및 유출 특성 분석 (Changes in temporal and spatial stream water concentrations and analysis on nonpoint source runoff in forested watersheds on non rainfall days)

  • 유현주;최형태;김재훈;임홍근;양현제
    • 한국환경복원기술학회지
    • /
    • 제23권6호
    • /
    • pp.137-149
    • /
    • 2020
  • This study was carried out to analyze the monthly runoff concentration on non rainfall days in order to prepare basic data to compare the runoff concentration on rainfall days in 7 forest watersheds in the Republic of Korea. Forest stream water has been collected through 15 times of sampling in each watershed and analyzed based on the changes in concentration of Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Organic Carbon(TOC), Total Nitrogen(TN), and Total Phosphorus(TP). The average concentration was 0.8 mg/L for BOD, 1.4 mg/L for COD, 0.8 mg/L for TOC, 1.85 mg/L for TN and 0.002 mg/L for TP during non rainfall days. Coniferous forested watersheds showed higher value of TN and TP concentration. Concentrations of BOD and TP in early March (p<0.01) were affected by melt water flow input in spring season. Significant differences (p<0.01) in concentrations were observed in BOD and TOC, indicating seasonal rainfall and vegetation growth impacts on forest stream quality. Concentration of TN and TP showed significant positive correlation, and weak negative correlation was found in the concentration of BOD and TOC. It is expected that result of forest stream water on non rainfall days could be basic information in managing non-point source from forest watersheds.

산림환경 및 하천형태인자에 의한 유역안정성 평가 (Evaluation of Watershed Stability by the Forest Environmental and Stream Morphological Factors)

  • 정원옥;마호섭
    • 한국환경복원기술학회지
    • /
    • 제4권4호
    • /
    • pp.1-11
    • /
    • 2001
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory(I) for evaluation of the watershed stability. Present annual mean sediment yield of erosion control dams were investigated in 167 sites of erosion control dam constructed during 1986 to 1999 in Gyeongbuk. The results obtained from this study were summarized as follows; According to the coefficients of partial correlation, each factor affecting to sediment was shown in order of gravel contents, number of first streams order, number of total streams, length of total streams, forest type, length of main stream, parent rock, stand age, soil texture, stream order, slope gradient, soil depth and aspect. Descriptions of class I were as follow; Igneous rock of parent rock, hardwood stands of forest type, less than 20 year of stand age, less than 30cm of soil depth, sandy clay loam of soil texture, more than 41% of gravel contents, south~east of aspect, 2,501~3,500m of length of main stream, 21~25 of number of total streams, 5,501~10,000m of length of total streams, 3 or more than 4 of stream order, more than 16 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class II were as follow; Metamorphic rock of parent rock, coniferous stands of forest type, more than 25 year of stand age, 31~40cm of soil depth, silt loam of soil texture, 11~20% of gravel contents, north~west of aspect, 2,501~3,500m of length of main stream, 16~20 of number of total streams, 3,501~5,500m of length of total streams, 3 of stream order, 11~15 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class III were as follow; Sedimentary rock of parent rock, mixed stands of forest type, more than 25 year of stand age, more than 51cm of soil depth, silty clay loam of soil texture, less than 10% of gravel contents, south~west of aspect, less than 500m of length of main stream, less than 5 of number of total streams, less than 1,000m of length of total streams, less than 1 of stream order, less than 2 of number of first stream orders and less than $25^{\circ}$ of slope gradient. The prediction method of suitable site for erosion control dam divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very unstable area was more than 8.4494. A score of class II was 8.4493 to 6.0452, it was evaluated as a moderate stable area, and class III was less than 6.0541, it was evaluated as a very stable area.

  • PDF

Effects of salmon carcass on forest and stream ecosystems, in Hokkaido, Japan -evidence by stable isotope analysis-

  • Yanai, Seiji;Kochi, Kaori
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.198-203
    • /
    • 2003
  • The effects of salmon carcasses on forest and stream ecosystems were determined by nitrogen stable isotope analysis in natural streams in Hokkaido, Northern Japan, where numerous chum salmon (Oncoryhncus keta) were migrated upstream ITom ocean to spawn in autumn. The leaves and soils surrounding riparian forest and stream dwelling invertebrates were collected before and after migration. The nitrogen stable isotope ratio $({\delta}^{15}N)$ of riparian vegetation (Salix spp.) were different depending on the presence of salmon and distance from the stream. The $({\delta}^{15}N)$ of stream dwelling invertebrates were different between salmon present and absent stream. This difference was tested using the experiment channel by implanting salmon carcasses. The nitrogen stable isotope ratio of epilithic algae and leaf shredding animals were nearly 3 higher in the salmon implanted treatment suggesting that around 20% of salmon derived nitrogen was uptake either in algae and leaf shredding invertebrates. These results suggest that the salmon carcasses effects not only on stream primary production but also on primary consumers, which decompose leaves fertilized with nitrogen from carcasses.

  • PDF