• Title/Summary/Keyword: foundation failure

Search Result 334, Processing Time 0.024 seconds

Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions (2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석)

  • 김상효;마호성;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

A new analytical model to determine dynamic displacement of foundations adjacent to slope

  • Varzaghani, Mehdi Imani;Ghanbari, Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.561-575
    • /
    • 2014
  • Estimating seismic displacements has a great importance for foundations on or adjacent to slope surfaces. However, dynamic solution of the problem has received little attention by previous researchers. This paper presents a new analytical model to determine seismic displacements of the shallow foundations adjacent to slopes. For this purpose, a dynamic equilibrium equation is written for the foundation with failure wedge. Stiffness and damping at the sliding surface are considered variable and a simple method is proposed for its estimation. Finally, for different failure surfaces, the calculated dynamic displacement and the surfaces with maximum strain are selected as the critical failure surface. Analysis results are presented as curves for different slope angles and different foundation distances from edge of the slope and are then compared with the experimental studies and software results. The comparison shows that the proposed model is capable of estimating seismic displacement of the shallow foundations adjacent to slopes. Also, the results demonstrate that, with increased slope angle and decreased foundation distances from the slope edge, seismic displacement increases in a non-linear trend. With increasing the slope angle and failure wedge angle, maximum strain of failure wedge increases. In addition, effect of slope on foundation settlement could be neglected for the foundation distances over 3B to 5B.

Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. However, there is still a lack of knowledge of lateral behavior of digging well foundation considering the soil-foundation interaction. In this study, scaled models of bridge pier-digging well foundation system are constructed for quasi-static test to investigate their lateral behaviors. The failure mechanism and responses of the soil-foundation-pier interaction system are analyzed. The testing results indicate that the digging foundations tend to rotate as a rigid body under cyclic lateral load. Moreover, the depth-width ratio of digging well foundation has a significant influence on the failure mode of the interaction system, especially on the distribution of foundation displacement and the failure of pier. The energy dissipation capacity of the interaction system is discussed by using index of the equivalent viscous damping ratio. The damping varies with the depth-width ratio changing. The equivalent stiffness of soil-digging well foundation-pier interaction system decreases with the increase of loading displacement in a nonlinear manner. The absolute values of the interaction system stiffness are significantly influenced by the depth-width ratio of the foundation.

An Experimental Study on the Failure Mechanism of Foundation with Depth (근입깊이에 따른 기초지반의 파괴형태에 관한 실험적 연구)

  • Bong, Hyoun Gyu;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gag
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.923-932
    • /
    • 1994
  • The studies on the bearing capacity of shallow and deep foundations have been made in various fields and formulas for various failure mechanisms have been presented. But, for these models, the method of classification with foundation depth has been obscure and bearing capacity factors have not been uniformly applied. An experiment was performed, in plane strain conditions, with ground model made of carbon rods. The failure mechanism of foundation and ultimate bearing capacity with foundation depth were observed. Based on experimental results the classification between shallow and deep foundations by failure shape was tried. Various present failure mechanisms of foundation were verified through the experiment.

  • PDF

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

Target Probability of Failure of Quay Wall Foundation for Reliability-Based Design (안벽기초 구조물의 신뢰성설계를 위한 목표파괴확률 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.379-389
    • /
    • 2010
  • It is very important to determine a target probability of failure in reliability based design such as an allowable factor of safety in working stress design because they are indices to judge the stability of structures. We have carried out reliability analyses of nationwide gravity type quay walls and found that sliding and foundation failures of quay walls were dominant failure modes for every case of loads. And a target probability of failure for bearing capacity of foundation of quay wall was also determined in this study. Of several approaches which have been suggested until now, a couple of reasonable approaches were used. Firstly, in order to consider the safety margin of structures which have been executed so far, the reliability levels of existing structures were assessed. And then a mean probability of failure for the quay walls was estimated. In addition, life cycle cost(LCC) analyses for representative structures were performed. Probabilities of failure for several quay walls were calculated with changing the width of each quay wall section. LCC of quay wall which is requiring case by case during the service life was evaluated, and also the optimum probability of failure of quay wall which minimizes LCC was found. Finally, reasonable target probabilities of failure were suggested by comparing with mean probability of failure of existing structures.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall (블록식 보강토 옹벽의 하자발생 사례 분석)

  • 신은철;오영인;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests (석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Heo, Seok
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.493-507
    • /
    • 2016
  • Scaled model tests were performed to investigate the stability of a foundation located above limestone cavities. Cavity shape was assumed to be an ellipse having 1/3 for the ratio of minor to major axis lengths. 12 different test models which have various depths, locations, inclinations, sizes and numbers of cavity were experimented and they were classified into 5 different groups. Crack initiation pressure, maximum pressure, deformation behaviors, failure modes and subsidence profiles of test models were obtained, and then the influences of those parameters on the foundation stability were investigated. No cavity model showed a general shear failure, whereas the models including various cavities showed the complicated three different failure modes which were only punching failure, both punching and shear failures, and double shear failure. The stability of foundation was found to be decreased as the cavity was located at shallower depth, the size and number of cavity were increased. Differential settlements appeared when the cavity was located under the biased part of foundation. Furthermore, subsidence profiles were found to depend on the distribution of underground cavities.