• Title/Summary/Keyword: fractional Bayes factor

Search Result 63, Processing Time 0.023 seconds

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

Intrinsic Priors for Testing Two Lognormal Means with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.39-47
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with a simulated dataset.

  • PDF

Intrinsic Priors for Testing Two Lognormal Populations with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.661-671
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with real example and a simulated dataset.

  • PDF

Instrinsic Priors for Testing Two Exponential Means with the Fractional Bayes Factor

  • Kim, Seong W.;Kim, Hyunsoo
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.395-405
    • /
    • 2000
  • This article addresses the Bayesian hypothesis testing for the comparison of two exponential mans. Conventional Bayes factors with improper non-informative priors are into well defined. The fractional Byes factor(FBF) of O'Hagan(1995) is used to overcome such as difficulty. we derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding FBFs. We demonstrate our results with three examples.

  • PDF

Intrinsic Priors for Testing Two Normal Means with the Default Bayes Factors

  • Jongsig Bae;Kim, Hyunsoo;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.443-454
    • /
    • 2000
  • In Bayesian model selection or testing problems of different dimensions, the conventional Bayes factors with improper noninformative priors are not well defined. The intrinsic Bayes factor and the fractional Bayes factor are used to overcome such problems by using a data-splitting idea and fraction, respectively. This article addresses a Bayesian testing for the comparison of two normal means with unknown variance. We derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factor. We demonstrate our results with two examples.

  • PDF

Bayesian hypothesis testing for homogeneity of coecients of variation in k Normal populationsy

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.163-172
    • /
    • 2010
  • In this paper, we deal with the problem for testing homogeneity of coecients of variation in several normal distributions. We propose Bayesian hypothesis testing procedures based on the Bayes factor under noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be dened up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

Bayesian Hypothesis Testing for the Ratio of Two Quantiles in Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.833-845
    • /
    • 2007
  • When X and Y have independent exponential distributions, we develop a Bayesian testing procedure for the ratio of two quantiles under reference prior. The noninformative prior such as reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we develop a Bayesian testing procedure based on fractional Bayes factor and intrinsic Bayes factor. We show that the posterior density under the reference prior is proper and propose the Bayesian testing procedure for the ratio of two quantiles using fractional Bayes factor and intrinsic Bayes factor. Simulation study and a real data example are provided.

  • PDF

Default Bayesian one sided testing for the shape parameter in the log-logistic distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1583-1592
    • /
    • 2015
  • This paper deals with the problem of testing on the shape parameter in the log-logistic distribution. We propose default Bayesian testing procedures for the shape parameter under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. We can solve the this problem by the intrinsic Bayes factor and the fractional Bayes factor. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Objective Bayesian testing for the location parameters in the half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1265-1273
    • /
    • 2011
  • This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The non-informative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be deal with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Bayesian Model Selection of Lifetime Models using Fractional Bayes Factor with Type ?$\pm$ Censored Data (제2종 중단모형에서 FRACTIONAL BAYES FACTOR를 이용한 신뢰수명 모형들에 대한 베이지안 모형선택)

  • 강상길;김달호;이우동
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.427-436
    • /
    • 2000
  • In this paper, we consider a Bayesian model selection problem of lifetime distributions using fractional Bayes factor with noninformative prior when type II censored data are given. For a given type II censored data, we calculate the posterior probability of exponential, Weibull and lognormal distributions and select the model which gives the highest posterior probability. Our proposed methodology is explained and applied to real data and simulated data.

  • PDF