• Title/Summary/Keyword: fractionated milk fat

Search Result 7, Processing Time 0.022 seconds

Effect of Addition of Fractionated Milk Fats on Fat Composition and Melting Behavior of Cocoa Butter (유지방 획분 첨가가 코코아 버터의 지방조성과 용융거동에 미치는 영향)

  • Kim, Sang-Yong;Roh, Hoe-Jin;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.482-491
    • /
    • 1997
  • The effect of addition of fractionated milk fats on the composition and melting behavior of cocoa butter was investigated. High melting fraction (HMF) of milk fat fractions had the highest contents of long chain fatty acid $(C16{\sim}C18)$ and saturated fatty acid followed by medium melting fraction 1 (MMF1), medium melting fraction 2 (MMF2), anhydrous milk fat (AMF), and low melting fraction (LMF) in a decreasing order. MMF2 had the highest contents of the short chain fatty acid $(C4{\sim}C10)$ and medium chain fatty acid $(C12{\sim}C14)$ followed by AMF, HMF, MMF1, and LMF in a decreasing order. When the fractionated milk fats were added to cocoa butter, the long chain fatty acid contents increased with increasing the ratio of fractionated milk fats. The saturated fatty acid contents decreased only when the LMF was added. The higher content of long chain triglyceride and the lower contents of short chain triglyceride and medium chain triglyceride were obtained from the fractionated milk fat of higher melting point. When the fractionated milk fats were added to cocoa butter, long chain triglyceride contents decreased with increasing the ratio of the fractionated milk fats. The melting points of cocoa butter, AMF, HMF, MMF1, MMF2, LMF were $33.3^{\circ}C,\;31.2^{\circ}C,\;40.6^{\circ}C,\;37.4^{\circ}C,\;33.5^{\circ}C$, and $6.5^{\circ}C$, respectively. Cocoa butter had the highest content of solid fat followed by HMF, MMF1, MMF2, AMF, and LMF in a decreasing order. When the fractionated milk fat was added to cocoa butter at various temperatures, the solid fat content in the mixture of fractionated milk fat and cocoa butter decreased with increasing the ratio of fractionated milk fat. This results suggested that anhydrous milk fat and fractionated milk fats had a good compatibility with cocoa butter.

  • PDF

Increase of Conjugated Linoleic Acid Level in Milk Eat by Bovine Feeding Regimen and Urea Fractionation

  • KIM, YOUNG JUN;KI WON LEE;HYONG JOO LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 2003
  • Increasing conjugated linoleic acid (CLA) content in dairy products has been a research Interest due to the potential health benefits resulted from consuming CLA. Attempts were made to obtain high level natural CLA containing fatty acid fractions from milk fat through bovine feeding of sunflower oil (SO) and urea fractionation. SO feeding changed the fatty acid profile of milk fat. increasing the CLA content five-fold at eight weeks of trial. Milk fat obtained from S0-fed cows was hydrolyzed to free fatty acids, which were then fractionated with urea at various ratios. The profiles of fatty acids were also greatly influenced by urea fractionation. Long-chain unsaturated fatty acids, Including CLA, were concentrated in milk fat after the fractionation, whereas saturated long-chain counterparts were eliminated. The highest level of CLA was achieved by the fractionation at 2:1 urea/fatty acid ratio (UFR2). CLA level was elevated 2.5-fold, and the Cl8:1/C18:0 fatty acid ratio was increased 120 times after the fractionation. The level of CLA in high CLA-milk fat (24mg/g fat) obtained from the feeding study was further increased through urea fractionation up to 52mg/g fat, 10 folds as high as CLA in the control milk fat (5mg/g fat).

Tow-stage Extraction of Milk Fat by Supercritical Carbon Dioxide

  • Sangbin Lim;Jwa, Mi-Kyung;Kwak, Hae-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1997
  • To develop mil fat fractions with desirable physico-chemical properties, anhydrous milk fat (AMF) was fractionated by one- and two-stage extractions using supercritical $CO_2$(SC-$CO_2$). Tow-stage extraction of AMF was performed by first producing tow fractions, an extract and a residue at 4$0^{\circ}C$/241bar, which were subsequently used as the feed for an extraction at 6$0^{\circ}C$/241bar and 4$0^{\circ}C$/345bar, and separated into five and four fractions, respectively, based one extraction time. These fractions were quantified and analyzed for fatty acids and physico-chemical properties. SHort-chain (C4~C8) fatty acids in extract fractions from an extract were 200~150% compared with those of the original AF. Long-chain (C14~C18) fatty acids in extract fractions from a residue were 118~141%. The ratio of unsaturated fatty acids in the residue fraction was 131%. Melting point ranged from 22 to 43$^{\circ}C$, iodine value 21.8 to 36.9, and saponification value 255 to 221 in the extract and residue fractions. SC-$CO_2$ fractionation of AMF by two-stage extraction offers the possibility of developing ractions with discrete fatty acid compositions and physico-chemical properties such as melting point, iodine value and saponification value.

  • PDF

Nutritive Value and Functional Properties of Protein Concentrate Fractionated from Chrysanthemum Flowers

  • Park, Nan-Young;Park, Yong-Jin;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.175-179
    • /
    • 1998
  • Some functional properties and nutritive value were determined for the protein concentrated fractionated from chrysanthemum flower in orer to renew interest in the flowers as food. Proximate components of chrysanthemum flower protein concentration (FPC) showed 61.2% protein, 2.0% fat and 35.2% carbhydrate on a dry basis. In amino acid composition of FPC, glutamic acid was the highest in the content, follwoed by aspartic acid, leucine and lysine. The ratio of essential/ total amino acids(E/T) was 0.42, showing a higher level of essential amino acids compared to the FAO reference protein. Digestibility of chrysanthemum FPC by pepsin and trypsin was lwoer than that of casein and was negatively correlative to both water and fat absorptions. Similar characteristics were determined between chrysanthemum FPC and milk casein in their emulsifying activity and emulsion stability. This results indicate that flowers or petals of chrysanthemum might be developed as a good source of protein.

  • PDF

Studies on Milk Protein of Korean Cattle I. Fractionation of Milk Protein on DEAE-Cellulose (한우유(韓牛乳)의 단백질(蛋白質)에 관(關)한 연구(硏究) 제(第)1보(報) DEAE-Cellulose에 의(依)한 한우유단백질(韓牛乳蛋白質)의 분별(分別))

  • Kim, Y.K.;Chang, J.I.
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.75-78
    • /
    • 1974
  • An experiment has been carried out in order to analyze the main components of Korean Cattles' milk, and fractionate the milk protein by DEAE-cellulose column. The results obtained were summarized as follow. 1) The average values of specific gravity, pH and acidity of Korean Cattles milk which were negative in alcohol test were 1,036, 6.4 and 0.21, respectively. 2) The average values of total solids, solids-not-fat, protein, lactose and ash contents of Korean Cattles milk were 11.61%, 9.53%, 2.08%, 3.99%, 4.76% and 0.86%, respectively. 3) Distribution of casein, whey protein, N.P.N., protein precipitated in 12% TCA, lactoglobulin and lactalbumin contents of the milk were 3.07%, 1.13%, 0.10%, 4.06%, 0.34% and 0.66%, respectively. 4) Acid casein obtained from Korean Cattles milk was fractionated into four fractions on DEAE-cellulose column with 0.005M tris-citrate buffer containing 6M urea, pH 8.6, and the ratio of the fraction I, II, III and IV was 3.24%, 52.67%, 26.22% and 17.87%, respectively. 5) Whey protein obtained from Korean Cattles milk was also fractionated into four fractions on DEAE-cellulose column with 0.04M phosphate buffer, pH 5.8, and the ratio of the fraction I, II, III and IV was 41.74%, 10.17%, 1.50% and 46.59%, respectively.

  • PDF

Nutritive Value and Functional Properties on Fractionated Chloroplastic and Cytoplasmic Protein from Leaves of Acacia(Robinia pseudo-acacia Line) (아카시아 잎에서 분획(分劃)한 엽록체단백질(葉綠體蛋白質)과 세포질단백질(細胞質蛋白質)의 영양가(榮養價) 및 기능적(機能的) 성질(性質))

  • Kim, Jong-Kyu;Kang, Kap-Suk;Ko, Yung-Du
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.321-325
    • /
    • 1983
  • This study was carried out to investigate the nutritive value and functional proterties of chloroplastic protein and cytoplasmic protein which are a leaf protein concentrates of acacia. The results obtained are as follows; 1. The limited amino acids of chloroplastic protein and cytoplasmic protein in acacia leaf were methionine & tryptophan in both cases. 2. Digestibilities of chloroplastic protein and cytoplasmic protein were 72.59% and 60.24%, respectively. 3. Bulk density, water absorption, emulsifying capacity and emulsion stability of the chloroplastic protein and cytoplasmic protein were not greatly different from those of milk casein, but water solubilities of those were lower than that of milk casein. 4. Fat absorption of the cytoplasmic protein was similar to that of milk casein, but that of the chloroplastic protein was lower than that of milk casein.

  • PDF

Fractionation and Physicochemical Characteristics of Caprine Casein by DEAE-Cellulose (DEAE-Cellulose에 의한 산양유 Casein의 분별 및 이화학적 성질에 관한 연구)

  • Im, Dong-Hyeon;Jeon, U-Min;Han, Gyeong-Sik;Kim, Byeong-Cheol;Hwang, Gwang-Yeon;Kim, Se-Heon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • This experiment was carried out to study fractionation and physicochemical characteristics of caprine casein. Acid caseins obtained from caprine colostral and normal milk were analyzed by chymosin treatment and fractionated by DEAE-cellulose column chromatography with linear gradient and electrophoresis. Protein, fat and lactose of caprine normal milk were 2.70${\pm}$0.27%, 3.82${\pm}$0.51%, and 4.10${\pm}$0.29%, respectively. More non-protein nitrogen(NPN) was released by chymosin treatment from caprine colostral casein than normal casein. The electrophoretic pattern of caprine casein was not similar to that of bovine casein, Caprine normal casein was fractionated by DEAE-cellulose column chromatography with a 0.08${\sim}$0.18 M NaCl linear gradient into 5 pes with the proportion of 5.27%, 26.07%, 25.97%, 30.40% and 12.29%, respectively. In order to identify the pure fraction, the chymosin-treated caprine normal casein was fractionated by DEAE-cellulosecolumn chromatography with a 0.08${\sim}$0.18 M NaCl linear gradient into 6 peaks with the proportion of 17.06%, 9.10%, 17.85%, 20.11%, 27.03% and 8.85%, respectively.

  • PDF