• Title/Summary/Keyword: fracture detection

Search Result 174, Processing Time 0.04 seconds

Tool Fracture Detection in Milling Process (I) -Part 1 : Development of Tool Fracture Index- (밀링 공정시 공구 파손 검출 (I) -제1편 : 공구 파손 지수의 도출-)

  • 김기대;오영탁;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.100-109
    • /
    • 1998
  • In order to increase productivity through unmanned machining in CNC milling process, in-process tool fracture detection is required. In this paper, a new algorithm for tool fracture detection using cutting load variations was developed. For this purpose, developed were tool condition vector which is dimensionless indicator of cutting load and tool fracture index (TFI) which represents magnitude of tool fracture. Through cutting force simulation, tool fracture index was shown to be independent of tool run-outs and cutting condition variations. Using tool fracture index, the ratio of the tool fracture to feed per tooth could be indentified.

  • PDF

Rock Fracture Centerline Extraction based on Hessian Matrix and Steger algorithm

  • Wang, Weixing;Liang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5073-5086
    • /
    • 2015
  • The rock fracture detection by image analysis is significant for fracture measurement and assessment engineering. The paper proposes a novel image segmentation algorithm for the centerline tracing of a rock fracture based on Hessian Matrix at Multi-scales and Steger algorithm. A traditional fracture detection method, which does edge detection first, then makes image binarization, and finally performs noise removal and fracture gap linking, is difficult for images of rough rock surfaces. To overcome the problem, the new algorithm extracts the centerlines directly from a gray level image. It includes three steps: (1) Hessian Matrix and Frangi filter are adopted to enhance the curvilinear structures, then after image binarization, the spurious-fractures and noise are removed by synthesizing the area, circularity and rectangularity; (2) On the binary image, Steger algorithm is used to detect fracture centerline points, then the centerline points or segments are linked according to the gap distance and the angle differences; and (3) Based on the above centerline detection roughly, the centerline points are searched in the original image in a local window along the direction perpendicular to the normal of the centerline, then these points are linked. A number of rock fracture images have been tested, and the testing results show that compared to other traditional algorithms, the proposed algorithm can extract rock fracture centerlines accurately.

Prediction and Detection of Tool Wear and Fracture in Machining (절삭시 발생하는 공구마멸의 예측 및 파괴의 검출에 관한 연구)

  • 김영태;고정한;박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.116-125
    • /
    • 1998
  • In this paper, main target is to select parameters for prediction of tool wear and detection of tool fracture. The research about choosing parameter for prediction of tool wear is done by using force ratios. Also current sensor, tool-dynamometer, and accelerometer are used for researching detection method of tool fracture. Experiment is done using Taguchi's method in medium machining conditions. Parameter which is best for prediction of tool wear and detection of tool fracture by deviation analysis is selected. In this paper, tool wear means flank wear.

  • PDF

A study on detection of tool fracture and chipping using acoustic emission (Acoustic emission을 이용한 공구파손 및 chipping의 탐지에 관한 연구)

  • 강명순;한응교;최성주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 1986
  • This study was investigated the feasibility of AE application on in-process detection of tool fracture and chipping. Carbon steel SM45C workpiece with longitudinal slots was turned interruptedly on a lathe. AE RMS signal at tool fracture was observed and also the tangential force and the feed observed at the time of tool fracture, the levels of tangential force and the feed force at the time of fracture decrease considerably. In chipping, high level AE signal was observed but there were no changes of cutting force. Peak AE RMS squared is proportional to the area of tool fracture and resultant force. Fracture model of tool fracture is proposed as $V_{p}$ = $C_{1}$ $E_{1}$F(.DELTA. A)$_{0.5}$ and peak AE RMS shows strong correlation with the fracture parameter F(.DELTA.A)$^{0.5}$.

  • PDF

Development of Tool Fracture Index for Detection of Tool Fracture in Milling Process (밀링시 공구 파손 검출을 위한 공구 파손 지수의 도출)

  • 김기대;오영탁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.881-888
    • /
    • 1997
  • A new algorithm for detection of tool fracture in milling process was developed. The variation of the peak-to-valley value of cutting load was used in this algorithm. Various kinds of vectors representing the condition of tool, such as tool condition vector, reference tool condition vector, tool condition variation vector were defined. Using these vectors, tool fracture index which represents the magnitude of tool fracture and is independent of tool run-outs is developed. Small and large tool fracture and chipping under various cutting condition could be detected using proposed tool fracture index, which was proved with cutting force model and experiments.

  • PDF

A Study on Detection of Cutting Tool Fracture by Dual Signal Measurements (이중신호에 의한 공구파손 검출에 관한 연구)

  • 윤재웅;양민양;박화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.707-722
    • /
    • 1992
  • Fracture of a cutting tool is one of the most serious problems in machining systems. Therefore, several methods have been proposed so far to detect cutting tool fracture. However, most of them have some problems from the viewpoint of practical applications. In this study, the feasibility of using acoustic emission and cutting force signals for the detection of massive tool breakages as well as small fracture of cutting tools were investigated. Turning experiments were performed using conventional carbide inset tools under realistic cutting conditions and the SM45C steel and heat treated SM45C steel were used as a workpiece. And the sensitivities of the AE and cutting force signals to the fracture of cutting tools were illustrated. Finally, a detection algortithm for the fracture of cutting tools was developed through the analysis of these dual signals in the several types of tool fracture.

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

A Study on the Fracture Detection of Multi-Point-Tool (다인공구의 파손검출에 관한 연구)

  • Choi, Young Kyu;Ryu, Bong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.67-77
    • /
    • 1995
  • In modern industry the requirement of automation of manufacturing process increases so that unmanned system has been popular as an ultimate goal of modern manufacturing process. In unmanned manufacturing process the tool fracture is a very serious problem because it results in the damage of workpieces and can stop the operation of whole manufa- turing system. In this study, image processing technique is used to detect the fracture of insert tip of face milling using multi-point-tool. In order to acquire the image information of fracture shape of rotation insert tip. We set up the optical system using a light beam chopper. In this system we can reduce the image degradation generated from stopped image of rotating insert tip using image restoration technique. We calculated the mean square error to diagnose the condition of tool fracture, and determind the criteria of tool fracture using experimental and staticstical method. From the results of this study we've developed non- contact detection technique of tool fracture using image processing method and proposed the fracture direction of automation and unmanned system considering the optimal time of tool change milling.

  • PDF

The Study of Realtime Fall Detection System with Accelerometer and Tilt Sensor (가속도센서와 기울기센서를 이용한 실시간 낙상 감지 시스템에 관한 연구)

  • Kim, Seong-Hyun;Park, Jin;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1330-1338
    • /
    • 2011
  • Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.