• Title/Summary/Keyword: freeze-dried cortical bone

Search Result 8, Processing Time 0.03 seconds

Changes of Strength and Stiffness of Freeze-Dried Bovine Cortical Bone according to Rehydration Time in Electrolyte Solution (동결건조한 소의 치밀골에서 전해질용액의 침지시간에 따른 Strength와 Stiffness의 변화)

  • 김남수;장세웅;김희은;정인성;최성진;최인혁
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.482-488
    • /
    • 2003
  • Transplanted cortical bone grafts of freeze-dried bones also function as sustaining for defected bones, however, it has less strength and is fragile without rehydration. In this study, strength and stiffness of freeze-dried bone from bovine cortical bones were evaluated by three point bending test according to different time frames such as rehydration times of 0.5, 3, 6, 12 and 24 hrs in electrolyte solution and was compared with those of frozen bones. The strength and stiffness of frozen bone were $264.4\pm36.7$ MPa, $17.0\pm1.5$ GPa, respectively. The strength and stiffness of freeze-dried bone which fat was removed by treatments of chloroform-methanol solutions for 6 days, then was freeze-dried at $-80^{\circ}C$ and sterilized with ethylene oxide gas, were $224.9\pm27.6$ MPa, $19.2\pm2.8$ GPa, respectively. The strength and stiffness of feeze-dried bone were decreased 15.0% and increased 13.2% than these of frozen bone, respectively. The strength and stiffness of freeze-dried bone rehydrated for 6 hrs were restored to 96.0% strength and 99.2% stiffness of frozen bone. The rehydration time of freeze-dried bone which had the highest strength and stiffness was six hours and three hours, respectively. The results of the mathematica program for the variation of the strength and stiffness showed 3 hours and 30 minutes of rehydration time in electrolyte solution for the best condition in the strength and stiffness which was adequate to treat freeze-dried cortical bone.

Bone regeneration effects of human allogenous bone substitutes: a preliminary study

  • Lee, Deok-Won;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. Methods: Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation. Results: In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups. Conclusions: Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.

Effectiveness of Transplantation by Freeze-Dried Bone of Goat to Dogs (동결건조한 산양뼈의 개이식 효과)

  • 최인혁;이종일
    • Journal of Veterinary Clinics
    • /
    • v.15 no.2
    • /
    • pp.442-449
    • /
    • 1998
  • Freeze-dried cortical bones of the goat were transplanted to the experimental fibular defect of 10 dogs for valuating the possibility of xenogeneic bone implantation and the specificity of BM(Bone Morphogenetic Protein). The . freeze-dried cortical bone eliminated antigens and defatted with chloroform and methanol were freeze-dried at $-80{\circ}C$ for preservation of BMP and then sterilized with 50 gas and storaged in room temperature. Ten freeze-dried cortical implants of the goat were transplanted in experimentally defected regions of bilateral fibula of 5 dogs in clinically normal. The transplanted region had been radiographed for observing state of bone union and BALPOone Alkaline Phosphatase) in the serum of the host was measured for valuating activity of oteoblast per 2 week-interval after transplant procedures. New bone formation had been observed early in one of ten regions around implants about the same time as autoimplant regions. It was incorporated with its host bone during 4-12 weeks after transplantation. In another 2 cases of 2 dogs, new bone formation and absorption of implant had been observed from 4 weeks but they were not incorporated completely until 20 weeks. The rest of the freeze-dried bone implants, 7 cases of 4 dogs had not been observed new bone formation nor absorption of implants. The freeze-drying method for implants means to not influence bone incorporation. Although less of union percentages the union form of this experiment were similar to alloimplantation and it may mean to block immunity reaction that disturbs the bone induction by BMP. It demonsknted that the possibility of the xenogenous bone implantation is recognized by reason of the low specificity of BMP between goat and dog.

  • PDF

Changes of Xenograft According to Extracted Time with Chloroform-methanol Solution in freeze-dried Cortical bone of Pig Transplanted to Dogs (개에서 동결건조한 돼지 치밀골의 Chloroform-methanol Solution 축출시간에 따른 이식골의 변화)

  • 최인혁;이미진;최은경;정인성;최성진;김남수
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.91-95
    • /
    • 2003
  • It has been known that periods of absorption varies allografts or xenografts of transplantations of freeze-dried cortical bone(FDCB). In this study changes of absorption of FDCB in xenograft transplantations were evaluated according to extracted time with chloroform-methanol solution(CM sol.). The FDCB from pig was removed soft tissue by surgical knife. Fat of the FDCB was removed with treatments of CM sol. for 2, 6, and 10 days, then the treated FDCB was freeze-dried at $-80^{\circ}C$ and sterilized with ethylene oxide gas. The FDCB was transplanted to fifteen millimeter artificial-defected regions of 6 dogs on fibular diaphyses. This was biweekly examined by radiograph for 18 weeks. In result new bone formation with FDCB treated for 6 days was higher than the other bones treated for 2 and 10 days. Duration of absorption with FDCB treated for 6 days was longer than the others. The remain with FDCB treated for 10 days was more than the others.

Extraction of Crude-BMP from Bovine Cortical Bone for Bone Grafts (골이식물로서의 소뼈 치밀골에서 Crude-BMP의 추출)

  • Choi Sung-jin;Park Chul;Heo Soo-young;Lee Jong-il;Jeong In-seong;Kim Nam-soo;Choi In-hyuk
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.377-381
    • /
    • 2005
  • We tried to extract bone morphogenetic protein (BMP) from the freeze-dried bovine cortical bone (FBCB) for bone graft, which were defatted with chloroform-methanol for 20 days, freeze-dried at $-80^{\circ}C$ for 7 days and sterilized by ethylene oxide gas. Two kg of FBCB were pulverized in a wheel mill to $0.5-2.0mm^3$ cubic in size. The bone particles were demineralized in 0.6N HCI for 10 days at chloroform-methanol$4^{\circ}C$ and defatted with chloroform-methanol for 6 hours at room temperature, which was going to be defatting and demineralized cortical bone (DDM). For extracting BMP, DDM was agitated continuously through 72 hours with magnetic stirrer at $4^{\circ}C$ into 12 times of volume of 6 M guanidine hydrochloride (Gdn-HCl) solution containing proteinase inhibitors to protect BMP such as 2mM N-ethylaleimide, 1mM iodoacetic acid, 1mM phenylmethylsulfonyl fluoride and a sterilizer, 1mM sodium azide. The extraction procedure was repeated for three times. All extracted solution was centrifuged at 10,000 rpm for 30 min and then, the supernatant was dialyzed with 12 times of volume of deionized water at $4^{\circ}C$ for 24-72 hours, which cut off below 6,000-8,000 molecular weight. The dialyzed specimen contained crude-BMP was centrifuged, freeze-dried, and weighted. Through these processing, we could obtained $84.9\%$ as FBCB, $17.8\%$ as DDM and $0.71\%$ as crude-BMP from the wet cortical bone without cancellous bone, marrow and muscles. The crude-BMP were obtained $68.3\%$ from the first extraction, $29.6\%$ from secondary and $2.1\%$ from tertiary, respectively. It was suggested that high yield of crude-BMP migth be explained by three-time repetition of the extraction processing for crude-BMP with Gdn-Hcl sol.

Comparison of Gap Pressure in Opening Wedge High Tibial Osteotomy versus Compressive Strength of Allogenous Wedge Bone Blocks (경골 근위부 개방 절골술 시 개방부 압력과 동종 쐐기 골편의 최대압축하중 비교)

  • Yoon, Kyoung Ho;Kim, Jung Suk;Kwon, Yoo Beom;Kim, Eung Ju;Lee, Myeong-Kyu;Kim, Sang-Gyun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • Purpose: The aims of this study were (1) to investigate the relationship between the characteristics of allogenic bone block and the compressive strength of an allogenic bone block measured by biomechanical experiments, and (2) to compare the maximum pressure load of allogenic bone block with the gap pressure measured at the high tibial opening osteotomy. Materials and Methods: Ten patients who provided informed consent for gap pressure measurements during opening wedge high tibial osteotomy (OWHTO) were included. The gap pressures were measured at 1 mm intervals while opening the osteotomy site from 8 mm to 14 mm. Seventeen U-shaped allogenous wedge bone blocks were made from the femur, tibia, and humerus. The height, width, cross-sectional area, and cortex thickness of the bone blocks were measured, along with the maximum compressive load just before breakage. The relationship between these characteristics and the maximum pressure load of the bone blocks was evaluated. The gap pressures measured in OWHTO were compared with the maximum pressure loads of the allogenous wedge bone blocks to evaluate the possibility of inserting allogenous wedge bone blocks into the osteotomy site without a distractor in OWHTO. Results: The OWHTO gap pressure increased with increasing osteotomy site opening. The mean gap pressure, which occurred at a 14-mm opening, was 282±93 N; the maximum pressure was 427 N. The maximum pressure load of the allografts was 13,379±6,469 N (minimum, 5,868; maximum, 29,130 N) and was correlated significantly with the cortical bone thickness (correlation coefficient=0.693, p=0.002) and cross-sectional area (correlation coefficient=0.826, p<0.001). Depending on the sterilization method, the maximum pressure loads for the bone blocks were 13,406±5,928 N for freeze-dried and 13,348±7,449 N for fresh frozen. The maximum compressive load of the allogenous wedge bone blocks was 13.7-times greater than that in OWHTO opened to 14 mm (5,868 N vs. 427 N). Conclusion: The compressive strength of allogenous wedge bone blocks was sufficiently greater than the gap pressure in OWHTO. Therefore, allogenous wedge bone blocks can be inserted safely into the osteotomy site without a distractor.

The retrospective study of survival rate of implants with maxillary sinus floor elevation (상악동 거상술을 동반한 상악구치부에 식립된 임플란트 생존율에 대한 후향적 연구)

  • Kim, Beom-Jin;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.108-118
    • /
    • 2010
  • Introduction: Maxillary posterior region, compared to the mandible or maxillary anterior region, has a thin cortical bone layer and is largely composed of cancellous bone, and therefore, it is often difficult to achieve primary stability. In such cases, sinus elevation with bone graft is necessary. Materials and Methods: In this research, 121 patients who had implant placement after bone graft were subjected to a follow-up study of 5 years from the moment of the initial surgery. The total survival rate, 5-year cumulative survival rate and the influence of the following factors on implant survival were evaluated; the condition of the patient (sex, age, general body condition), the site of implant placement, diameter and length of the implant, sinus elevation technique, closure method for osseous window, type of prosthesis and opposing teeth. Results: 1. The 5-year cumulative survival rate of total implants was 90.5%, there was no significant difference between sex, age, the site of implant placement, diameter and length of the implant, sinus elevation technique, and the type of opposing teeth. 2. Patients with diabetes mellitus < osteoporosis and smooth-surfaced machined group < hydroxyapatite (HA)-treated group and homogenous demineralized freeze dried allogenic bone (DFDB) bone graft only group had significantly lower survival rate. 3. With less than 4 mm of residual alveolar ridge height, lateral approach without closing the osseous window resulted in a significantly lower survival rate. 4. Restoration of a single implant showed a significantly lower survival rate, compared to cases where the superstructure was joined with several implants in the area. Conclusion: Patients with diabetes or osteoporosis need longer period of time for osseointegration compared to the normal, and the dentists must be prudent when choosing a surface treatment type and the bone graft material. Also, as the vertical dimension of the residual alveolar ridge can influence the result, staged implant placement should be considered when it seems difficult for the implant to gain primary stability from the residual bone with less than 4 mm of vertical dimension. It is recommended to obdurate the bone window and that the superstructure be connected with several impants in the peripheral area.