• Title/Summary/Keyword: frequency channel

Search Result 2,798, Processing Time 0.029 seconds

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

The Literatural Study on Acupuncture and Moxibustion Therapy of Arthalgia Syndrome (비증(痺症)의 침구치료(鍼灸治療)에 관한 문헌적(文獻的) 고찰(考察))

  • Je, Byung Sun;Lim, Lark cheol;Oh, Min Suck
    • Journal of Haehwa Medicine
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • I have come to next conclusions in consequence of documentary study about medical books of many generations regarding acupuncture and moxibustion therapy of arthalgia syndrome. 1. Jing point of regular channels is most used. Next there are extraordinary point, ashi point in the acupuncture and moxibustion therapy of arthalgia syndrome. 2. The gall baldder channel of foot-shaoyang is most used. Next there are the urinary bladder channel of foot-taiyang, the large intestine channel of hand-yangming, the stomach channel of foot-yangming, the small intestine channel of hand-taiyang, the spleen channel of foot-taiyin, the liver channel of foot-jueyin, the triple-warmer channel of hand-shaoyang, the du channel, the lung channel of hand-taiyin, the kidney channel of foot-shaoyin, the pericardium channel of hand-jueyin, the heart channel of hand-shaoyin, the ren channel in the order of frequency in used channel among the twelve channels. 3. Three yang channels of foot is most used. Next there are three yang channels of hand, three yin channels of hand, three yin channels of foot in the order of frequency in use among the twelve channels. 4. The gall baldder channel of foot-shaoyang is most used. Next there are the urinary bladder channel of foot-taiyang, the large intestine channel of hand-yangming, the triple-warmer channel of hand-shaoyang, the stomach channel of foot-yangming, the small intestine channel of hand-taiyang, the liver channel of foot-jueyin, the lung channel of hand-taiyin, the spleen channel of foot-taiyin, the kidney channel of foot-shaoyin, the du channel, the pericardium channel of hand-jueyin, the ren channel the heart channel of hand-shaoyin in the order of frequency in used point among the twelve channels. 5. Huantiao is most used. Next there are Weizhong, Quchi, Yangfu, Chize Feiyang Xiyangguan Xiguan Tianjing, Sanli Xiaoluo in the order of frequency in use. 6. Jing point in the order of frequency of use, expel wind-evil and remove wetness-evil on the Acupuncture and Moxibustion Therapy of Arthalgia Syndrome.

  • PDF

Online Blind Channel Normalization Using BPF-Based Modulation Frequency Filtering

  • Lee, Yun-Kyung;Jung, Ho-Young;Park, Jeon Gue
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1190-1196
    • /
    • 2016
  • We propose a new bandpass filter (BPF)-based online channel normalization method to dynamically suppress channel distortion when the speech and channel noise components are unknown. In this method, an adaptive modulation frequency filter is used to perform channel normalization, whereas conventional modulation filtering methods apply the same filter form to each utterance. In this paper, we only normalize the two mel frequency cepstral coefficients (C0 and C1) with large dynamic ranges; the computational complexity is thus decreased, and channel normalization accuracy is improved. Additionally, to update the filter weights dynamically, we normalize the learning rates using the dimensional power of each frame. Our speech recognition experiments using the proposed BPF-based blind channel normalization method show that this approach effectively removes channel distortion and results in only a minor decline in accuracy when online channel normalization processing is used instead of batch processing

A Channel Estimation Method for MIMO-OFDM Systems (MIMO-OFDM 시스템에서의 채널 추정 기법)

  • Kim, Gyeong-Seok;Ahn, Do-Rang;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.277-279
    • /
    • 2004
  • In this paper, we propose an channel estimation method for Multi-Input Multi-Output-Orthogonal frequency Division Multiplexing (MIMO-OFDM). The proposed method estimates uniquely all channel frequency responses needed in space-frequency block coded OFDM systems using "comb-type" pilot symbols. To reduce the computational complexity of the proposed method, least square(LS) and linear minimum mean square error(LMMSE) are used in the frequency-domain. The performance of the proposed approach is evaluated by computer simulation for rayleigh fading channel.

  • PDF

A Study on Improvement of the Channel Efficiency of FH-SS Transceiver Based on DDS Technique

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A novel high channel efficiency transceiver based on a fast acquisition frequency synthesizer has been designed. The direct digital synthesis (DDS) technique is applied and a simple memory look-up table is incorporated to expedite channel acquisition. The technique simplifies the frequency control process in the transceiver and thus reduces the channel switching time. As a result, the channel efficiency is improved. The designed transceiver is ideal for frequency hopping mobile communication applications.

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

Channel-Adaptive Beamforming Method for OFDMA Systems in frequency-Selective Channels (주파수 선택적 채널에서 OFDMA 시스템을 위한 적응 빔포밍 방법)

  • Han Seung Hee;Lee Kyu In;Ahn Jae Young;Cho Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.976-982
    • /
    • 2005
  • In this paper, a channel-adaptive beamforming method is proposed for OFDMA (Orthogonal Frequency Division Multilexing Access) systems with smart antenna, in which the size of a cluster is determined adaptively depending on the frequency selectivity of the channel. The proposed method consists of 4 steps: initial channel estimation, refinement of channel estimates, region-splitting, and computation of weight vector for each region. In the proposed method, the size of a cluster for resource unit is determined adaptively according to a region-splitting criterion. It is shown by simulation that the proposed method shows good performances in both frequency-flat and frequency-selective channels.

Performance of selective combining according to channel selection decision method of frequency diversity in underwater frequency selective channel (수중 주파수 선택적 채널에서 주파수 다이버시티의 채널 선택 판정법에 따른 선택 합성법의 성능)

  • Lee, Chaehui;Jeong, Hyunsoo;Park, Kyu-Chil;Park, Jihyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 2022
  • In this paper, the performance of the selective combining according to the channel selection decision method of frequency diversity is evaluated in the underwater frequency selective channel. The underwater acoustic channel in the shallow sea has a complex multipath characteristic by combining various environmental factors such as boundary surface reflection and sound wave refraction according to the water temperature layer. In particular, frequency selectivity due to multipath causes energy fluctuation in a communication channel, which reduces SNR (Signal to Noise Ratio) and deteriorates communication performance. In this paper, we applied the frequency diversity technique using multiple channels to secure the communication performance according to the frequency selectivity by multipath. For each channel, 4-FSK (Frequency Shift Keying) and selective combining were applied, the performance was evaluated by applying the maximum value, average value, and majority decision of the signal in order to decide the demodulation channel selection of the selective combining.

Implementation of CEI frequency operation function in IMDC for FA-50 aircraft

  • You, Eun-Kyung;Kim, Hyeock-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The Korean Air Force FA-50 aircraft currently operating in the Air Force is using Ultra High Frequency (UHF) frequency communications for navigation communications with ground control stations or other aircraft. The pilot communicates by changing frequency at any time during flight, and performs communication by directly inputting from the Integrated Up-Front Controller installed in the cockpit. The frequency is designated as secret, and the pilot receives the task with the frequency channel number (001~xxx) and finds the frequency of the channel in the list of 4,000 frequency channels and inputs it manually. This reduces the safety and convenience of pilots' operations and exposes them to hazards that may occur especially during night flight missions. In this paper, we propose a function to embed the frequency corresponding to the frequency channel list in IMDC, the aircraft mission computer, and to automatically change the frequency when the pilot only inputs the channel number.

Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.496-503
    • /
    • 2013
  • In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.