• 제목/요약/키워드: frequency optimization

검색결과 1,195건 처리시간 0.023초

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

Frequency optimization for laminated composite plates using extended layerwise approach

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제12권6호
    • /
    • pp.541-548
    • /
    • 2012
  • This paper deals with the applicability of extended layerwise optimization method (ELOM) for frequency optimization of laminated composite plates. The design objective is the maximization of the fundamental frequency of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • 제12권1호
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

고유진동수 접근현상을 고려한 쉘 구조물의 설계최적화기법 (Shell Design Optimization Technique considering the Appearance of Close Frequencies in Optimization Process)

  • 배정은;이상진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.248-251
    • /
    • 2006
  • This paper provides the basic theory and numerical results of shell design optimization considering the appearance of close natural frequencies in optimization process. In this study the fundamental natural frequency to be maximized is considered as the objective function and the initial volume of structures is used as the constraint function. In addition, the constraints related to natural frequency is also adopted to avoid the natural frequency closeness phenomenon during the optimization iteration. The Coon's patch is used to represent the shape and thickness distribution of shells. A degenerated shell finite element is adopted to calculate the fundamental natural frequency of the shells. The SQP available in the optimizer DoT is used to search optimum solution. From numerical results, the introduction of the frequency constraint into shell design optimization can deeply affect on the final optimum shape of shells although it is likely to be used to avoid the frequency closeness phenomenon.

  • PDF

개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화 (Truss Size Optimization with Frequency Constraints using ACO Algorithm)

  • 이상진;배정은
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

유용방향법에 의한 고유진동수 최적화 (Frequency Optimization Using by Feasible Direction Method)

  • 조희근;박영원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

  • Jung, Hee-Jun;Song, Sung-Jin;Kim, Chang-Hwan;Kim, Dea-Kwang
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.579-585
    • /
    • 2009
  • The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.