• Title/Summary/Keyword: fruit and vegetable fermentation

Search Result 16, Processing Time 0.026 seconds

Effect of Water Condition and Air Circulation on Fruit Fermentation of Oriental Melon (Cucumis melo L. var. makuwa Makino) (수분조건 및 송풍처리가 참외의 발효과 발생에 미치는 영향)

  • Shin, Yong-Seub;Seo, Young-Jin;Yeon, Il-Kweon;Do, Han-Woo;Choi, Chung-Don;Park, So-Deuk;Kim, Byung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.333-337
    • /
    • 2007
  • This study was conducted to assess effects of soil moisture condition and ventilation on development of fermented fruit of oriental melon. In higher soil moisture condition (-10 kPa), roots absorbed more water and transpiration was decreased under low temperature and high humidity conditions. Development of fermented fruit may be come from absorbed water concentrated placenta with higher soluble solid. Fermented fruit was developed with higher level at Shintozoa and Elite, was developed with lower level at Hongtozoa, and was not developed at self-rooting of oriental melon. Ventilation on fruit did not affect development of fermented fruit at Shintozoa, Elite, Hongtozoa and self-rooting seedling. Ca contents of flesh and placenta of fruit under ventilation treatment were higher than control but contents of Acetaldehyde, Ethanol and Ethylacetate were lower.

Chemical Changes of Fruit-Vegetable Juice during Mixed Culture Fermentation of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙 발효과정중의 주요 성분변화)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 1998
  • Lactic acid bacteria KL 1, KD 6, KL 4 strains isolated from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for mixed culture fermentation 3 days at 3$0^{\circ}C$, and then their chemical changes were studied during fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 days) or 0.58%(1 day) and with the final pH of 3.3(3 days) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. The contents of vitamin C and carotene were retained and stabilized as 70~80% level of their initial values after 24 hrs fermentation. And also ethanol was produced as of the range in 9.6mg%(W/V) by the mixed culture fermentation of KL 1 and yeast, however, the content of ethanol in single culture fermentation by KL 1 strain was much lower than that of mixed culture. The major components of organic acids in fermented juice by mixed culture were considered as malic(26.0%), lactic(49.9%), succinic and citric acid, whereas these of unfermented juice were malic(53.2%), citric and other acids. On other hand, reducing sugar was decreased from 18.3mg/ml in fresh juice to about 12mg/ml in juice by mixed culture fermentation. Concentrations of fructose, glucose and sucrose were also greatly reduced in fermented juice.

  • PDF

Evaluation of Intestinal Immunity Activity by Steam-Heat Treatment and Fermentation of Lactic Acid Bacteria of Fruit and Vegetable Complex Extracts containing Red Ginseng (홍삼함유 과채류 복합 추출물의 증숙열처리 및 유산균 발효에 의한 장관면역 활성)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.935-941
    • /
    • 2022
  • The purpose of this study was to investigate whether the activity of ginsenoside metabolites and the intestinal immunity antioxidant activity were remarkably improved by lactic acid bacteria fermentation by adding a small amount of ginsenoside to the complex extracts of fruits and vegetables. It was confirmed that the increase in intestinal immunity antioxidant activity due to synergistic effect was observed in the fruit-vegetable extract containing ginsenoside compared to the ginsenoside-only extract or the fruit-vegetable extract. Then, by adding ginsenosides by content, the concentration of ginsenosides that can obtain a synergistic effect according to the fermentation of lactic acid bacteria was determined. As a result, it was confirmed that a synergistic effect was exhibited when lactic acid bacteria were fermented and extracted by mixing ginsenosides in a mass ratio of 3 to 10% with respect to the mass of the fruit-vegetable mixture. As a result, when treated at a concentration of 200 ㎍/ml, the fruit-vegetable complex extract containing ginsenoside metabolites inhibited the generation of NO by about 60% compared to the complex extract containing no ginsenoside, The expression of IL-1β was suppressed by 63%, the expression of IL-6 by 69%, and the expression of TNF-α by 76%, confirming that the intestinal immune antioxidant properties were significantly improved.

Fermentation Aspects of Fruit-Vegetable Juice by Mixed Cultures of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙의 발효양상)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1059-1064
    • /
    • 1998
  • Fermented beverage using lactic acid bacteria isolated from kimchi was investigated. Lactic acid bacteria KL 1, KD 6, KL 4 strains from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for single and mixed culture fermentation. During the fermentation by bacterial strain and yeast for 1~3 days at 30oC, various fermentation behaviors were observed. The growth rate of mixed culture of KL 1 and yeast was higher than that of single culture by KL 1 alone during the fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 day) or 0.58%(1 day) and with the final pH of 3.3(3 day) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. Among several bacterial strains, KL 1 was suitable for the mixed culture fermentation with yeast in terms of desirable fermentation behavior and organoleptical quality. The selected strain, KL 1 was identified as Leuconostoc spp. through the series of tests on carbohydrate fermentation and biochemical characteristics.

  • PDF

A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants

  • Ahmadi, Farhad;Lee, Won Hee;Kwak, Wan Sup
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1479-1490
    • /
    • 2021
  • Objective: Our recent findings confirmed the effectiveness of sodium metabisulfite (SMB) in controlling the growth of undesirable microorganisms in fruit and vegetable discards (FVD); however, lactic acid bacteria (LAB) are susceptible to its antibacterial effects. Two series of experiments were conducted to enable the survivability of LAB during silage fermentation of a total mixed ration (TMR) containing SMB-treated FVD. Methods: In Exp. 1, the objective was to isolate a strain of LAB tolerable to the toxic effect of SMB. In Exp. 2, the SMB load was minimized through its partial replacement with a chemical mixture (CM) based on sodium benzoate (57%), potassium sorbate (29%), and sodium nitrite (14%). FVD was treated with SMB + CM (2 g each/kg biomass) and added to the TMR at varying levels (0%, 10%, or 20%), with or without KU18 inoculation. Results: The KU18 was screened as a presumptive LAB strain showing superior tolerance to SMB in broth medium, and was identified at the molecular level using 16S rRNA gene sequence analysis as Lactobacillus plantarum. Inoculation of KU18 in TMR containing SMB was not successful for the LAB development, biomass acidification, and organoleptic properties of the resultant silage. In Exp. 2, based on the effectiveness and economic considerations, an equal proportion of SMB and CM (2 g each/kg FVD) was selected as the optimal loads for the subsequent silage fermentation experiment. Slight differences were determined in LAB development, biomass acidification, and sensorial characteristics among the experimental silages, suggesting the low toxicity of the preservatives on LAB growth. Conclusion: Although KU18 strain was not able to efficiently develop in silage mass containing SMB-treated FVD, the partial substitution of SMB load with the CM effectively alleviated the toxic effect of SMB and allowed LAB development during the fermentation of SMB + CM-treated FVD in TMR.

Influence of Atmospheric Vapor Pressure Deficit on Fruit Fermentation of Oriental Melon(Cucumis melo L. var makuwa Makino) (대기 증기압차가 참외 발효과 발생에 미치는 영향)

  • Shin, Yong-Seub;Seo, Young-Jin;Choi, Chung-Don;Park, So-Deuk;Choi, Kyung-Bae;Yoon, Jae-Tak;Kim, Byung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Although the relationship between fermentation and factors such as soil water, redox potential, rootstocks and climatic conditions has been reported, its mechanism of fermentation is still not clear. Transpirations of leaf and fruit at different climatic conditions, influence of soil water potential and atmospheric vapor pressure deficit (VPD) on fermentation were evaluated. Transpiration rate decreased with decreasing soil temperature and soil water potential. Low VPD conditions which occurred during low air temperature and high humidity also decreased transipration rate. These data exhibit that fruit water balance affected by various factors relate to transpiration. Our results also indicate that high hydraulic conductance of root, high soil water potential and low VPD condition exert a significant effect on fermention of oriental melon and so called "water filled fruit".

Characteristics of Fermented Fruit and Vegetable Mixed Broth Using by Bacteriocin-producing Lactic Acid Bacteria and Yeast (박테리오신 생성 젖산균과 효모를 이용한 과채발효액의 특성)

  • Jung, Dong-Sun;Lee, Young-Kyung;Lim, Kyung-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1358-1364
    • /
    • 2000
  • A mixed culture of bacteriocin-producing lactic acid bacteria and yeast was used to prepare unique fermented fruit and vegetable beverage which contains bacteriocin. Fruit and vegetable broth fermented by Lactococcus lactis 11454 showed inhibitory activity against foodborne pathogens such as Listeria monocytogens and Staphylococcus aureus, and Streptococcus mutans which is a major causative agent for dental caries. Bacteriocin was detected at the end of fermentation of fruit and vegetables and its antimicrobial activity was stable for 5 weeks during storage at $4^{\circ}C$. These results suggest that the presence of bacteriocin in beverages during fermentation and storage will provide a safeguard against foodborne pathogens and spoilage bacteria. To improve flavor of the fermented broth, post-fermentation of the fermented broth was carried out at $4^{\circ}C$ by using yeast isolated from raw material mixture. Total acidity of the post-fermented broth was slightly decreased, but significant increase in the concentration of succinic acid was observed in the post-fermented broth. It was also observed that bitter and disagreeable taste compounds such as phthalates were decreased, and mild acidic and fruity flavor esters and alcohols were increased by the post-fermentation of the fermented broth with yeast.

  • PDF

The Qualities and Functionalities of the Fermentation Broth of Fruits, Vegetables and Medicinal Herbs (과일, 야채 및 한약재 발효액의 품질과 기능성에 대한 연구)

  • Baik, Kyung-Yeon;Kim, Duck-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.2
    • /
    • pp.195-201
    • /
    • 2007
  • This study were investigated the changes in chemical components, quality characteristics of the fermented broth, and physiological functionality during fermentation period of fruit, vegetables, and medicinal herbs. pH and $^{\circ}$Bx gradually decreased and the viscosity increased. The chromaticity of L, a, and b all increased. The total number of germs dropped from $10^5{\sim}10^6\;to\;10^2{\sim}10^3$ CFU/ml, and that of lactobacilli also decreased noticeably. According to the result of the effect on fat oxidation, a very low level of TBARS was shown. After thirty days of fermentation, the amount of each fermentation broth increased more or less, but as it declined considerably after ninety days, it was found that the binding effect of $Fe^{2+}$ ion was small and insignificant. The electron donating ability, though not reaching 0.5% ascorbic acid, showed a high level of activity from $33.71{\sim}72.15%$ before fifteen days and $44.76{\sim}75.20%$ ninety days after fermentation. Among them, the fruit fermentation solution showed the highest activity. It was also found that the organic functions for each fermentation broth decreased more or less depending on the fermentation period and the thirty-days-old fermentation broth were favored most. On the basis of the above experiment results, it can be concluded that the optimum fermentation period for fruit, vegetables, and medicinal herb is thirty to ninety days.

Effects of Ginseng Saponin Metabolites and Intestinal Health Active Ingredients of Vegetables Extracts and Fermented Lactic Acid Bacteria (비지터블 추출물 및 유산균 발효물의 진생사포닌 대사산물과 장건강 활성성분 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.943-951
    • /
    • 2022
  • In this study, 8 kinds of fruits and vegetables such as apples, pears and radishes were cut and hot water extracts and Steamed hot water extract from fruits and vegetables were prepared and used as experimental substrates. As a result of fermenting with 1% (W/V) red ginseng extract (W/V) and 8 types of lactic acid bacteria mixed starter added to the lactic acid bacteria fermented extract, the pattern and content of ginsenosides were almost unchanged in the fruit and vegetable extract group and the steam treatment group. However, in the lactic acid bacteria fermented group, the TLC pattern was changed according to the fermentation process and treatment, and the content of ginsenosides converted into Rg3(S) and Rg5 increased. No change in the number of lactic acid bacteria (cfu) was observed in all four types of fruit and vegetable extracts. The number of lactic acid bacteria CFU was slightly decreased in the four fermented groups of fruit and vegetable extracts, but the growth inhibitory effect of beneficial bacteria was not significant. The growth inhibitory effect of the three harmful bacteria was not affected by the growth of E. coli and Pseudomonas in the four fruit and vegetable extracts. However, the proliferation of Salmonella was inhibited, which was confirmed as the growth inhibitory effect of the fruit and vegetable extract regardless of whether the steamed hot water extract or red ginseng extract was added.

Lactic held Bacteria for the Preservation of Fruit and Vegetables (과실 및 채소류의 저장에 있어서 Lactic Acid Bacteria의 이용)

  • 김건희;배은경
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.245-254
    • /
    • 1999
  • Traditionally, lactic acid bacteria(LAB) is microorganism that has been used for food fermentation. Bacteriocinogenic culture and by-products of lactic acid bacteria have the antimicrobial effect. The antimicrobial effect of lactic acid bacteria enable to extend the shelf life of many foods through fermentation processes. Therefore, a lot of investigation of antimicrobial compounds from LAB have been studied on the effect of foods preservation of fish, meat, dairy product, refreserated nonfermentive food and so on. However a little research on the effects of LAB in fruit and vegetables preservation has been reported. In this study, effectiveness of LAB as a quality preservative in fruit and vegetables storage were reviewed.

  • PDF