• Title/Summary/Keyword: fuel metabolism

Search Result 17, Processing Time 0.022 seconds

The Effect of Vitamin $B_2$ Deficiency on Fuel Metabolism in Streptozotocin Induced Diabetic Rats (Vitamin $B_2$ 결핍이 Streptozotocin 유발 당뇨 흰쥐의 에너지대사에 미치는 영향)

  • 조윤옥;박경순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The purpose of this study was to investigate the effect of vitamin B2 deficiency on fuel metabolism in streptozotocin-induced diabetic rats. Thirty rats were fed a vitamin B2 deticient diet(-B2) or a control diet (+B2) for 2 weeks and then subdivided into 3 groups respectively : base group, one day diabetic group and three day diabetic group. Diabetes of the rats were induced by streptozotocin injection into the tail vein. Glucose, glycogen, protein, alanine, triglyceride and free fatty acid were compared in plasma, liver, skeletal muscle of rats. Also, the total urinary nitrogen and glucose excertion were compared. Compared with +B2 rats, the increase of plasm glucose in -B2 rats due to the diabetes tended to be smaller. After diabetes were induced, the levels of plasma protein and alanine was significantly decreased and the urinary nitrogen excretion was significantly increased in -B2 rats. The level of plasma free fatty acid was increased continuously in B2 rats while increased at the first day and decreased at the third day diabetes was induced in +B2 rats. These results suggest that vitamin B2 deficiency increase protein catabolism due to the decrease of fatty acid oxidation. Thus, vitamin B2 deficiency in diabetes impair the adaptation of animals to the fuel metabolism and aggravate the body protein wasting which is one of the chronic complications of diabetes.

  • PDF

The Effect of Vitamin B6 Deficiency on the Utilization of Fuel and Blood Cholesterol Profile with Regular Exercise-Training in Rats (비타민 B6 부족이 정기적인 운동 훈련시 연료의 이용과 혈액 콜레스테롤 성상에 미치는 영향)

  • 조윤옥
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.881-888
    • /
    • 1996
  • The purpose of this study was to determine whether vitamin B6(B6) deficiency affects fuel utilization and blood cholesterol profile with exercise-training. Twenty-four rats were fed a B6 deficient(-B6) diet or a control (+B6) diet for 5 weeks and either exercised(EX) or nonexercised (NE). EX rats were exercised on treadmill(10$^{\circ}$, 0.5-0.8km/h) for 20 minutes everyday. Glucose(GLU), glycogen (GLY), protein(PRO), trglyceride(TG), free fatty acid(FFA), total cholesterl(TC), HDL-cholesterol(HDL-C) and LDL-choleterol(LDL-C) were compared in plasma(P), liver(L) and skeletal muscle(M) of rats. There was a vitamin effect on the level of P-GLU, P-TG, M-TG, L-GLY, L-PRO and an exercise effect on the level of P-PRO, P-FFA, M-PRO, L-GLY, L-TG, P-TC, P-HDL-C, P-LDL-C. Compared to +B6 rats were lower and there were no differences in P-GLU, P-FFA, P-TG. M-GLY, L-TG, P-TC and P-HDL-C. In EX group, the level of P-TG was higher and M-PRO was lower in -B6 rats. There were no differences in M-GLY, L-TG, P-TC and P-HDL-C. These results suggest that a lowered intake of vitamin B6 may impair the adaptation of animals to fuel metabolism related to a decrease of fatty acid oxidation and attenuates the exercise-traning effect on blood lipid profile.

  • PDF

Characteristics and case study of Low Carbon Green City planning from the perspective of Urban Metabolism (도시 신진대사 관점에서 본 저탄소 녹색도시 계획특성 및 사례 분석)

  • Choi, Joung-Eun;Kim, Jong-Kon;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • v.11 no.5
    • /
    • pp.3-12
    • /
    • 2011
  • Industrialization and development of technology satisfied various humanly needs and lay the basis of numerous benefit and profit. New technologies like these mostly required large amounts of fossil Fuel, Fossil energy depletion rate was increasing rapidly. However, technical development for Human race required absolute sacrifice of the environment. Especially, 'City' which had been focused as stage of human activities, allowed to continue to have fossil energy dependent activities, and it shows in many data that the city is responsible for the 75-80% of the green house gas by human. In order to solve the problem relating climate changes and energy, European countries already made progress studies on many of the low carbon green city and pilot case construction. Especially, Germany, Austria, Holland, Sweden who had been playing leader role on environmental awareness and ecological concept, are actively constructing low carbon green city project based on Ecological city planning scheme. These projects positively utilize planning scheme that limits carbon emission using Urban Metabolism concept. Therefore, throughout this study, I would like to present planning and direction of future domestic low carbon green city by analyzing theories relative theories and best practices in Europe.

The Effect of Spent Medium Recycle on Cell Proliferation, Metabolism and Baculovirus Production by the Lepidopteran Se301 Cell Line Infected at Very Low MOI

  • Beas-Catena, Alba;Sanchez-Miron, Asterio;Garcia-Camacho, Francisco;Contreras-Gomez, Antonio;Molina-Grima, Emilio
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1747-1756
    • /
    • 2013
  • The aim of this paper was to study the effect of spent medium recycle on Spodoptera exigua Se301 cell line proliferation, metabolism, and baculovirus production when grown in batch suspension cultures in Ex-Cell 420 serum-free medium. The results showed that the recycle of 20% of spent medium from a culture in mid-exponential growth phase improved growth relative to a control culture grown in fresh medium. Although both glucose and glutamine were still present at the end of the growth phase, glutamate was always completely exhausted. The pattern of the specific glucose and lactate consumption and production rates, as well as the specific glutamine and glutamate consumption rates, suggests a metabolic shift at spent medium recycle values of over 60%, with a decrease in the efficiency of glucose utilization and an increase in glutamate consumption to fuel energy metabolism. Baculovirus infection provoked a change in the metabolic pattern of Se301 cells, although a beneficial effect of spent medium recycle was also observed. Both growth rate and maximum viable cell density decreased relative to uninfected cultures. The efficiency of glucose utilization was dramatically reduced in those cultures containing the lowest percentages of spent medium, whereas glutamine and glutamate consumption was modulated, thereby suggesting that infected cells were devoted to virus replication, retaining their ability to incorporate the nutrients required to support viral replication. Recycle of 20% of spent medium increased baculovirus production by around 90%, thus showing the link between cell growth and baculovirus production.

The Effects of Vitamin B6 Deficiency on Stored Fuel Utilization During 3 days Fasting or 6 days underfeeding in Rats

  • Cho, Youn-Ok
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.923-929
    • /
    • 1994
  • The effects of vitamin B6 deficiency on energy utilization during fasting or underfeeding were studied in rats. Fifteen rats were fed a vitamin B6 deficient(-B6) diet and another 15 rats wee fed a control (+B6) diet. These rats were fed for 5 weeks with respective diet, and then subdivided into 3 groups : non-fasted group, fasted group, underfed group. Rats of the fasted group were fasted for 3 days and those of underfed group for 6 days. At the respective time (non-fast, 3 day-fast, 6 day-underfeed at 5 weeks), animals were sacrificed. Feed efficiency ratio of - B6 rats was significantly lower than that of +B6 rats. In - B6 rats, the liver and kidney weights were significantly heavier than those of +B6 rats but spleen and heart weights were not. In non-fasted group, liver protein and triglyceride level of - B6 rats were significantly higher than that of +B6 rats. After - B6 rats were fasted for 3 days, plasma free fatty acid level was significantly lower but liver glycogen level was higher than that of +B6 rats and muscle protein level of +B6 was decreased while that of - B6 was not changed. Vitamin B6 deficiency had little effect on the energy utilization with 6 days underfeeding. These results suggest that vitamin B6 deficiency may impair the utilization of stored fuel during fasting.

  • PDF

Development of Microbial Fuel Cells Using Proteus vulgaris

  • Kim, Nam Jun;Choe, Yeong Jin;Jeong, Seon Ho;Kim, Seong Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.44-48
    • /
    • 2000
  • Microbial fuel cells comprising the microorganism P. vulgaris, thionin as a mediator, and various mono- and disaccharides in an anodic compartment have been developed. A cathodic compartment containing a Pt electrode and Fe$(CN)_6^{3-}$ was separated from an anode by the Nafion membrane. From absorbance-time measurements, it was found that the absorbance of thionin was not altered by the addition of P. vulgaris, even in the presence of sugars. However, thionin was effectively reduced when P. vulgaris was present. These results differ substantially from the case of safranine O, a phenazine-derivative, indicating that thionin takes up electrons during the metabolic oxidation processes of carbohydrates. Maximum fuel cell efficiency was observed at 37 $^{\circ}C$, optimum temperature for the growth of P. vulgaris, and 0.5 V cell voltage was obtained, which indicates that the metabolism of the microorganism directly affects the efficiency. Thionin concentration was closely related to cell performance. When the charging-discharging characteristics were tested with glucose, galactose, sucrose, maltose, and trehalose as carbon sources, galactose was found to give the highest coulombic efficiency. Cell performance was almost fully recovered with only small degradation when glucose and sucrose were used in the repetitive operation. Current was maintained nearly twice as long for sucrose than in the case of glucose.

Spectrometry Analysis of Fumes of Mixed Nuclear Fuel (U0.8Pu0.2)O2 Samples Heated up to 2,000℃ and Evaluation of Accidental Irradiation of Living Organisms by Plutonium as the Most Radiotoxic Fission Product of Mixed Nuclear Fuel

  • Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.274-284
    • /
    • 2016
  • Purpose: The purpose of this work is to describe the spectrometric analysis of gaseous cloud formation over reactor mixed uranium-and-plutonium (UP) fuel $(U_{0.8}Pu_{0.2})O_2$ samples heated to a temperature $>2,000^{\circ}C$, and thus forecast and evaluate radiation hazards threatening humans who cope with the consequences of any accident at a fission reactor loaded by UP mixed oxide $(U_{0.8}Pu_{0.2})O_2$, such as a mixture of 80% U and 20% Pu in weight. Materials and methods: The UP nuclear fuel samples were heated up to a temperature of over $2,000^{\circ}C$ in a suitable assembly (apparatus) at out-of-pile experiments' implementation, the experimental in-depth study of metabolism of active materials in living organisms by means of artificial irradiation of pigs by plutonium. Spectrometric measurements were carried out on the different exposed organs and tissues of pigs for the further estimation of human internal exposure by nuclear materials released from the core of a fission reactor fueled with UP mixed oxide. Results: The main results of the research described are the following: (1) following the research on the influence of mixed fuel fission products (radioactive isotopes being formed during reactor operation as a result of nuclear decay of elements included into the fuel composition) on living organisms, the authors determined the quantities of plutonium dioxide ($PuO_2$) that penetrated into blood and lay in the pulmonary region, liver, skeleton and other tissues; and (2) experiments confirmed that the output speed of plutonium out of the basic precipitation locations is very small. On the strength of the experimental evidence, the authors suggest that the biological output of plutonium can be disregarded in the process of evaluation of the internal irradiation doses.

AMPK Activators from Natural Products: A Patent Review

  • Uddin, Mohammad Nasir;Sharma, Govinda;Choi, Hong Seok;Lim, Seong-Il;Oh, Won Keun
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • AMP-activated protein kinase (AMPK) is a major cellular energy sensor and master regulator of metabolic homeostasis. On activation, this cellular fuel sensing enzyme induces a series of metabolic changes to balance energy consumption via multiple downstream signaling pathways controlling nutrient uptake and energy metabolism. This pivotal role of AMPK has led to the development of numerous AMPK activators which might be used as novel drug candidates in the treatment of AMPK related disorders, diabetes, obesity, and other metabolic diseases. Consequently, a number of patents have been published on AMPK activators from natural products and other sources. This review covers the patented AMPK activators from natural products and their therapeutic potential in treatment or prevention of metabolic diseases including diabetes and obesity.

Characteristics of Pinitol as a Functional Food Biomaterial (건강기능성 식품소재로서 pinitol의 특성)

  • Son, Min-Sik;Seo, Myung-Seon;Lee, Sang-Han
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.147-151
    • /
    • 2009
  • D-pinitol, another chemical structure of 3-O-methyl-D-chiro-inositol, is an important insulin-sensitizer. The purpose of this review is to examine the characteristics of pinitol and other analogs as functional food biomaterials which were well known to reduce blood glucose levels. Pinitol can be converted to chiro-inositol in normal humans, while diabetic patients can not use the molecule, resulting in exhibiting low level of chiro-inositol in their urine. Recently, it is reported that pinitol can trigger phospholipase C/D, thus the rate of glucose metabolism accelerates to use as fuel for human body. To not only reduce insulin resistance of diabetic patients, but also alleviate the symptoms of diabetes, obesity, and muscle contraction, pinitol and its dietary supplementation is needed.

Lactate: a multifunctional signaling molecule

  • Lee, Tae-Yoon
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.3
    • /
    • pp.183-193
    • /
    • 2021
  • Since its discovery in 1780, lactate has long been misunderstood as a waste by-product of anaerobic glycolysis with multiple deleterious effects. Owing to the lactate shuttle concept introduced in the early 1980s, a paradigm shift began to occur. Increasing evidence indicates that lactate is a coordinator of whole-body metabolism. Lactate is not only a readily accessible fuel that is shuttled throughout the body but also a metabolic buffer that bridges glycolysis and oxidative phosphorylation between cells and intracellular compartments. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells and tissues, resulting in diverse biological consequences including decreased lipolysis, immune regulation, anti-inflammation, wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, accounting for its key role in immune modulation and maintenance of homeostasis.