• Title/Summary/Keyword: full-mode

Search Result 877, Processing Time 0.081 seconds

Design of Full-Order Observer-based Sliding Mode Controller for Power System Stabilizer : Part I (전력계통안정기를 위한 전-차수 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part I)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1156-1158
    • /
    • 1997
  • This paper presents the proposed full-order observer-based sliding mode power system stabilizer(FOOSMPSS) for finding unmeasurable state variables(torque angle, quadratic-axis transient voltage, exciter output voltage, voltage regulator output voltage and output voltage) by measuring angular velocity. The simulation results is shown by the comparison of the FOOPSS with the proposed FOOSMPSS.

  • PDF

Human Postural Response to Linear Perturbation (선형외란에 대응하는 인체의 자세응답 해석)

  • Kim, Se-Young;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

A Study on Full Bridge and Half Bridge Mode Transition Method of LLC Resonant Converter for Wide Input and Output Voltage Condition (넓은 입출력 전압을 위한 LLC 공진형 컨버터의 풀 브리지-하프 브리지 모드 변환 기법 연구)

  • Choe, Min-Yeong;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.356-366
    • /
    • 2022
  • This paper presents a mode transition method that applies frequency compensation technique of an LLC resonant converter for stable mode transition. LLC resonant converters used in various applications require high efficiency and high power density. However, because of circuit property, a wider voltage gain range equates to a greater circuit loss, so maintaining high efficiency at all voltage gain ranges is difficult. In this case, full bridge-half bridge mode transition method can be used, which maintains high efficiency even in a wide voltage gain range. However, this method causes damage to the circuit through overcurrent by the mode transition. This study analyzes the cause of the problem and proposes a mode transition method that applies frequency compensation technique to solve the problem. The proposed method verifies the stable transition through simulation analysis and experimental results.

Dual-Mode Reference-less Clock Data Recovery Algorithm (이중 모드의 기준 클록을 사용하지 않는 클록 데이터 복원 회로 알고리즘)

  • Kwon, Ki-Won;Jin, Ja-Hoon;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.77-86
    • /
    • 2016
  • This paper describes a dual-mode reference-less CDR(Clock Data Recovery) operating at full / half-rate and its operation algorithm. Proposed reference-less CDR consists of a frequency detector, a phase detector, a charge pump, a loop filter, a voltage controlled oscillator, and a digital block. The frequency and phase detectors operate at both full / half-rate for dual-mode operation and especially the frequency detector is capable of detecting the difference between data rate and clock frequency in the dead zone of general frequency detectors. Dual-mode reference-less CDR with the proposed algorithm can recover the data and clock within 1.2-1.3 us and operates reliably at both full-rate (2.7 Gb/s) and half-rate (5.4 Gb/s) with 0.5-UI input jitter.

High Efficiency Design Considerations for the Self-Driven Synchronous Rectified Phase-Shifted Full-Bridge Converters of Server Power Systems

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.634-643
    • /
    • 2015
  • This paper presents a high frequency design approach for improving efficiency over a wide load range in the self-driven phase-shifted full-bridge converters for server power systems. In the proposed approach, a detailed ZVS analysis of the lagging leg switches in both the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM) is presented. The optimum dead time and the determination of the appropriate operation mode are given for high efficiency according to the load conditions. Finally, the optimum operation conditions are defined to achieve a high-efficiency. A laboratory prototype operating at 80 kHz, rated 1 kW (12 V-83.3 A), is built to verify proposed theoretical analysis and evaluations. The experimental results show that the maximum efficiency is achieved as 95% and 83.5% at full load and 5% load conditions, respectively.

Full Vehicle Modal Testing using Single-Run FRF Measurement and Mode Map Validation (Single-Run FRF 측정을 통한 실차 모달 시험 및 모드맵 검증)

  • Lee, Keun-Soo;Jung, Seung-Kyun;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • Finding reasonable flexural modes from the full vehicle modal testing has always been a difficult job to N&V engineers due to FRF inconsistency, nonlinearity, heavy damping and, in many cases, interactions between global body structural modes and massive isolate/non-isolated subsystem modes. This paper provides a brier overview of the mode map validation using single-run FRF measurement with highly sensitive accelerometers fur the full vehicle modal analysis and then it can be used to characterize the vehicle's global/local vibration performances, especially customer perceived "structural feel" typically below 40Hz.

  • PDF

Full-Range Analytic Drain Current Model for Depletion-Mode Long-Channel Surrounding-Gate Nanowire Field-Effect Transistor

  • Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.361-366
    • /
    • 2013
  • A full-range analytic drain current model for depletion-mode long-channel surrounding-gate nanowire field-effect transistor (SGNWFET) is proposed. The model is derived from the solution of the 1-D cylindrical Poisson equation which includes dopant and mobile charges, by using the Pao-Sah gradual channel approximation and the full-depletion approximation. The proposed model captures the phenomenon of the bulk conduction mechanism in all regions of device operation (subthreshold, linear, and saturation regions). It has been shown that the continuous model is in complete agreement with the numerical simulations.