• 제목/요약/키워드: function field

검색결과 4,325건 처리시간 0.032초

IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

  • Jung, Hwan-Yup
    • 대한수학회보
    • /
    • 제45권2호
    • /
    • pp.375-384
    • /
    • 2008
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. Fix a prime divisor ${\ell}$ q-1. In this paper, we consider a ${\ell}$-cyclic real function field $k(\sqrt[{\ell}]P)$ as a subfield of the imaginary bicyclic function field K = $k(\sqrt[{\ell}]P,\;(\sqrt[{\ell}]{-Q})$, which is a composite field of $k(\sqrt[{\ell}]P)$ wit a ${\ell}$-cyclic totally imaginary function field $k(\sqrt[{\ell}]{-Q})$ of class number one. und give various conditions for the class number of $k(\sqrt[{\ell}]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_i$ over ${\ell}$-cyclic totally imaginary function field $F_i=k(\sqrt[{\ell}]{-P^iQ})$ for $1{\leq}i{\leq}{\ell}-1$.

CIRCULAR UNITS IN A BICYCLIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.61-69
    • /
    • 2008
  • For a real subextension of some cyclotomic function field with a non-cyclic Galois group order $l^2$, l being a prime different from the characteristic of function field, we compute the index of the Sinnott group of circular units.

  • PDF

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS

  • Ahn, Jaehyun;Jung, Hwanyup
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.699-704
    • /
    • 2010
  • In this paper, we prove that the Hilbert 2-class field tower of an imaginary quadratic function field $F=k({\sqrt{D})$ is infinite if $r_2({\mathcal{C}}(F))=4$ and exactly one monic irreducible divisor of D is of odd degree, except for one type of $R{\acute{e}}dei$ matrix of F. We also compute the density of such imaginary quadratic function fields F.