• Title/Summary/Keyword: fungal endophyte

Search Result 36, Processing Time 0.026 seconds

Effect of Tall fescue (Schedonorus phoenix Scop.) Genotype on Endophyte (Neotyphodium coenophialum) Transmission under Water stress

  • Noh, Jaejong;Ju, Ho-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.325-334
    • /
    • 2012
  • It has been known that endophyte (Neotyphodium coenophialum) is beneficial to tall fescue (Schedonorus phoenix Scop.) because the mutualistic endophyte is able to confers tolerance against abiotic and biotic stresses to tall fescue. However, this fungal endophyte produces toxic alkaloid resulting in negative effects on animal performance. Recently, Non-toxic endophyte have been developed and inserted into tall fescue to avoid detrimental effect on animal but remaining positive influence on tall fescue. In order to keep this beneficial impact, it is essential to have endophyte infected tall fescue through vertical transmission from maternal plants to seeds. Little research has been carried out on endophyte transmission. To get basic information related to endophyte transmission, experiment was conducted to examine the effect of plant genotype on endophyte transmission under water stresses. Overall endophyte concentration in seeds was higher than that in panicles and endophyte concentration in seeds and panicles relied on plant. This study revealed that drought is not a critical component to control the endophyte transmission from maternal plants to seeds. Plant genotype is an important factor controlling the endophyte transmission from plant to seed.

Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

  • Park, Young-Hwan;Kim, Young-Chang;Park, Sang-Un;Lim, Hyoun-Sub;Kim, Joon-Bum;Cho, Byoung-Kwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.327-333
    • /
    • 2012
  • Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Isolation and Identification of Taxol, an Anticancer Drug from Phyllosticta melochiae Yates, an Endophytic Fungus of Melochia corchorifolia L.

  • Kumaran, Rangarajulu Senthil;Muthumary, Johnpaul;Hur, Byung-Ki
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1246-1253
    • /
    • 2008
  • Phyllosticta melochiae, an endophytic fungus isolated from the healthy leaves of Melochia corchorifolia, was screened for the production of an anticancer drug, taxol on modified liquid medium and potato dextrose broth medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified by high performance liquid chromatography. The maximum amount of fungal taxol production was recorded as $274{\mu}g/L$. The production rate was increased to $5.5{\times}1,000$ fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay. The results designate that the fungal endophyte, P. melochiae is an excellent candidate for an alternate source of taxol supply and can serve as a potential species for genetic engineering to enhance the production of taxol to a higher level.

Neocosmospora rubicola, an Unrecorded Endophytic Fungus Isolated from Roots of Glycyrrhiza uralensis in Korea

  • Kim, Jin-Hee;Kim, Dong-Yeo;Park, Hyeok;Cho, Jae Hee;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.63-67
    • /
    • 2017
  • Through a survey of symbiotic endophytic fungi, we isolated an endophyte fungal strain from the roots of Glycyrrhiza uralensis in Korea. The isolated fungal strain was identified using its morphological characteristics and through phylogenetic analysis of the internal transcribed spacer, the large subunit rDNA region, and the translation elongation factor region. The strain was identified as Neocosmospora rubicola. This species has not been previously reported in Korea. In this study, we report its isolation from the roots of Glycyrrhiza uralensis in Korea, followed by the characterization and identification of the strain.

A Note on a Dark Septate Endophyte Phialocephala piceae Isolated from Needle Leaves of Thuja koraiensis in Korea

  • Kim, Dong-Yeo;Eo, Ju-Kyeong;Park, Hyeok;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.338-341
    • /
    • 2016
  • A dark septate endophytic fungal strain 13E043 was isolated from the needle leaves of Thuja koraiensis from a forest in Korea. Morphological characteristics of conidia and phialids. Along with a molecular phylogenetic analysis based on the internal transcribed spacer region of rDNA, the isolate was identified as Phialocephala piceae (also known as Phaeomollisia piceae). This is the first report of a dark septate endophyte isolated from the foliage of conifer trees in Korea.

Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A.;Jeon, Mi Jin;Jeong, Min-Hye;Kim, Youngmin;Lee, Yerim;Chung, Hyunjung;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.240-244
    • /
    • 2020
  • Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.

Phytohormnes producing Preussia sp. BSL-10 induce phytohormonal changes in tomato (Solanum lycopersium cv.) under divers temperature.

  • Al-Hosni, Khdija;Shahzad, Raheem;Kang, Sang-Mo;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.202-202
    • /
    • 2017
  • Global climate change resulted in unwarranted change in global temperature and caused heat and cold stress, which are consider major threat to agriculture productivity around the world. The use of plant growth-promoting microbes is an eco-friendly strategy to counteract such stresses and confer tolerance to the plants. In current study, previously isolated endophytic fungi Preussia sp. BSL-10 has been found to produce phytohormones such as IAA and GA and as such, endophyte Preussia sp. BSL-10 found to induced tolerance against heat and cold stress. The results showed that under both heat and cold stress the plant growth parameter such as shoot, root length, shoot fresh weight and root fresh weight is higher in Preussia sp. BSL-10 treated plants as compare to free Preussia sp. BSL-10 control plants. In addition, the stress-sensitive endogenous ABA levels were significantly increased in Preussia sp. BSL-10 host plant. The current result suggest that the phytohormone-producing endophyte Preussia sp. BSL-10 can increase plant resistance toheat and cold stress, in turn improving agricultural productivity.

  • PDF

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth

  • Lalancette, Steve;Lerat, Sylvain;Roy, Sebastien;Beaulieu, Carole
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.415-429
    • /
    • 2019
  • Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.

Distribution, Characterization, and Diversity of the Endophytic Fungal Communities on Korean Seacoasts Showing Contrasting Geographic Conditions

  • You, Young-Hyun;Park, Jong Myong;Seo, Yeong Gyo;Lee, Woong;Kang, Myung-Suk;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.150-159
    • /
    • 2017
  • This study analyzed the distribution of endophytic fungi in 3 coastal environments with different climatic, geographical, and geological characteristics: the volcanic islands of Dokdo, the East Sea, and the West Sea of Korea. The isolated fungal endophytes were characterized and analyzed with respect to the characteristics of their host environments. For this purpose, we selected common native coastal halophyte communities from three regions. Molecular identification of the fungal endophytes showed clear differences among the sampling sites and halophyte host species. Isolates were also characterized by growth at specific salinities or pH gradients, with reference to previous geographical, geological, and climate studies. Unlike the East Sea or West Sea isolates, some Dokdo Islands isolates showed endurable traits with growth in high salinity, and many showed growth under extremely alkaline conditions. A smaller proportion of West Sea coast isolates tolerate compared to the East Sea or Dokdo Islands isolates. These results suggest that these unique fungal biota developed through a close interaction between the host halophyte and their environment, even within the same halophyte species. Therefore, this study proposes the application of specific fungal resources for restoring sand dunes and salt-damaged agricultural lands and industrialization of halophytic plants.