• Title/Summary/Keyword: fungicides sensitivity

Search Result 55, Processing Time 0.026 seconds

Triazole Fungicides Sensitivity of Sclerotinia homoeocarpa in Korean Golf Courses

  • Lee, Ji Won;Choi, Jihye;Kim, Jin-Won
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.589-596
    • /
    • 2017
  • Chemical management of dollar spot in turf may lead to the development of Sclerotinia homoeocarpa populations with reduced fungicide sensitivity. The objective of this study was to investigate resistance of S. homoeocarpa isolates to triazole fungicides and to test cross-resistance among three triazole fungicides. A total of 66 isolates of S. homoeocarpa were collected from 15 golf courses across Korea, and tested via in vitro sensitivity assay against hexaconazole, propiconazole and tebuconazole. $EC_{50}$ values of the isolates to these fungicides were distributed in the range of $0.001-1.1\;a.\;i.\;{\mu}g\;ml^{-1}$. Based on the $EC_{50}$ values, twelve representative strains were selected as sensitive isolates including control and insensitive isolates with respect to each fungicide. At a concentration of $0.1\;a.\;i.\;{\mu}g\;ml^{-1}$ for all fungicides, the selected strains were distinguished as sensitive or resistant isolates with the mycelial growth inhibition rate of 50% as the criterion. The $EC_{50}$ values of resistant strains exposed to hexaconazole, propiconazole and tebuconazole were 20-50 times, 50-70 times, and 77 times greater, respectively, than that of the control strains. Two isolates of S. homoeocarpa S0-41 and Sh14-2-1 showed sensitivity toward all the fungicides used, while two other isolates Sh7-5-1 and Sh2-1-1 showed resistance to all fungicides. Each isolate showed similar resistance to the three types of triazole fungicides, whereby cross-resistance of isolates was confirmed in the present study; all three triazole fungicide combinations displayed significant correlation coefficients equivalent to or greater than 0.8.

Sensitivity of the Pyrenophora teres Population in Algeria to Quinone outside Inhibitors, Succinate Dehydrogenase Inhibitors and Demethylation Inhibitors

  • Lammari, Hamama-Imene;Rehfus, Alexandra;Stammler, Gerd;Benslimane, Hamida
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.218-230
    • /
    • 2020
  • Net blotch of barley caused by Pyrenophora teres (Died.) Drechsler, is one of the most destructive diseases on barley in Algeria. It occurs in two forms: P. teres f. teres and P. teres f. maculata. A total of 212 isolates, obtained from 58 fields sampled in several barley growing areas, were assessed for fungicide sensitivity by target gene analysis. F129L and G137R mitochondrial cytochrome b substitution associated with quinone outside inhibitors (QoIs) resistance, and succinate dehydrogenase inhibitors (SDHIs) related mutations (B-H277, C-N75S, C-G79R, C-H134R, and C-S135R), were analyzed by pyrosequencing. In vitro sensitivity of 45 isolates, towards six fungicides belonging to three chemical groups (QoI, demethylase inhibitor, and SDHI) was tested by microtiter technique. Additionally, sensitivity towards three fungicides (azoxystrobin, fluxapyroxad, and epoxiconazole) was assessed in planta under glasshouse conditions. All tested isolates were QoI-sensitive and SDHI-sensitive, no mutation that confers resistance was identified. EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.

Effectiveness of Different Classes of Fungicides on Botrytis cinerea Causing Gray Mold on Fruit and Vegetables

  • Kim, Joon-Oh;Shin, Jong-Hwan;Gumilang, Adiyantara;Chung, Keun;Choi, Ki Young;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.570-574
    • /
    • 2016
  • Botrytis cinerea is a necrotrophic pathogen causing a major problem in the export and post-harvest of strawberries. Inappropriate use of fungicides leads to resistance among fungal pathogens. Therefore, it is necessary to evaluate the sensitivity of B. cinerea to various classes of fungicide and to determine the effectiveness of different concentrations of commonly used fungicides. We thus evaluated the effectiveness of six classes of fungicide in inhibiting the growth and development of this pathogen, namely, fludioxonil, iprodione, pyrimethanil, tebuconazole, fenpyrazamine, and boscalid. Fludioxonil was the most effective ($EC_{50}$ < $0.1{\mu}g/ml$), and pyrimethanil was the least effective ($EC_{50}=50{\mu}g/ml$), at inhibiting the mycelial growth of B. cinerea. Fenpyrazamine and pyrimethanil showed relatively low effectiveness in inhibiting the germination and conidial production of B. cinerea. Our results are useful for the management of B. cinerea and as a basis for monitoring the sensitivity of B. cinerea strains to fungicides.

Development of Microbial Bioassay for Detection of Pesticide Residues (미생물을 이용한 농약잔류 분석법 개발)

  • 백수봉;양창술;오연선
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 1994
  • This study was carried out to develop bioassay for detection of pesticide residues in agricultural products by using the soil microbial isolates sensitive to pesticides. One hundred bacterial isolates and eighty five fungal isolates were obtained from soil and their sensitivity to 10 ppm of several pesticides was examined in vitro. Five bacterial isolates and three fungal isolates were found sensitive to organochloride fungicide and two fungal isolates sensitive to organocopper fungicide. Among these isolates, B46, B93 and F67 were tested to find out the difference in sensitivity according to the methods of fungicide treatment. All of the isolates were found sensitive to 10 ppm of organochloride fungicides mixed directly in PDA. But they were found insensitive to the fungicide mixed in PDA after filtering through membrane filter. In case of organocopper fungicide, the isolates were found sensitive only when it was treated in PDA. And their sensitivity showed difference among various kinds of organochloride fungicides. B46 and B93 were employed to check the possibility as the agent for detection of the pesticidal residues in twenty eight agricultural products including rice. It was found that all samples had not residues because the samples did not inhibit the growth of isolates. When organochloride fungicides were applied to the above products, it was possible to detect the residues in fruits and vegetables at the concentration of 10 ppm, but not in starch-rich grains. B46 and B93 were identified as Bacillus sp. according to their bacterial characteristics in culture.

  • PDF

Changes in Sensitivity Levels of Botrytis cinerea Populations to Benzimidazole, Dicarboximide, and N-Phenylcarbamate Fungicides (잿빛곰팡이병균(Botrytis cinerea)의 Benzimidazole계, Dicarboximide계 및 N-phenylcarbamate계 살균제에 대한 감수성 변화)

  • 김병섭;박은우;조광연
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.693-699
    • /
    • 1998
  • Three three hundred and ninety seven isolates of Botrytis cinerea were isolated from infected plants of strawberry, tomato and cucumber from several areas in Korea during 1994∼1996 and the resistance of these isolates against some fungicides were examined. The isolation frequency of phenotypes resistant to carbendazim, procymidone, and diethofencarb were found to be 69.9 43.7, and 31.8%, respectively. The isolates were divided into six phenotypic groups; SSR, SRR, RSS, RRS, RSR and RRR, representing sensitive (S) or resistant (R) to benzimidazole, dicarboximide, and N-phenylcarbamate fungicides in order. The percentage of six phenotypes were 28.2, 2.0, 27.2, 41.0, 0.9 and 0.8%, respectively. On the basis of the mycelial growth inhibition (%) B. cinerea isolates were divided into three classes (class 1; 0∼50%, class 2; 51-99%, class 3; 100% inhibition) on carbendazim and three classes (class 1; 0∼75%, class 2; 76∼99%, class 3; 100% inhibition) on procymidone and the mixture of carbendazim+diethofencarb, respectively. Changes in sensitivity levles to carbendazim and carbendazim+diethofencarb were affected by introduction and increasing ratio of the use of diethofencarb.

  • PDF

Sensitivity to Ergosterol Biosynthesis Inhibiting-Fungicides of Colletotrichum gloeosporioides Isolated from Persimmon Trees (감나무로부터 분리한 Colletotrichum gloeosporioides의 스테롤 생합성 저해제에 대한 감수성)

  • Lim, Tae-Heon;Lee, Dong-Woon;Choi, Yong-Hwa;Lee, Sang-Myeong;Han, Sang-Sub;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.3
    • /
    • pp.171-176
    • /
    • 2009
  • In 2008, 110 isolates of Colletotrichum gloeosporioides were obtained from infected twigs of persimmon collected at Sangju and five fungicides (prochloraz manganese complex, tebuconazole, mancozeb+myclobutanil, fluquinconazole+prochloraz, and tebuconazole+tolyfluanid) were evaluated to determine their growth on fungicide-medium. Among them, the mycelial growth of 97.3 and 98.2% of isolates was inhibited over 91% in response to prochloraz ($250\;{\mu}g/m{\ell}$) and tebuconazole ($125\;{\mu}g/m{\ell}$), respectively, compared to untreated control. In response to mancozeb+myclobutanil, fluquinconazole+prochloraz, and tebuconazole+tolyfluanid, isolates of 96.4, 99.1 and 96.4% of them were inhibited by fungicides, respectively. Isolates showed the highest sensitivity to fluquinconazole+prochloraz among 5 fungicides. The correlation between tebuconazole and tebuconazole+tolyfluanid was higher (r=0.85).

Sensitivity to Fungicides of Typhula incarnata Isolates Causing Gray Snow Mold (설부소립균핵병균 Typhula incarnata의 살균제 감수성)

  • Lee, Seong Jun;Lee, Dong Woon;Chang, Taehyun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.69-75
    • /
    • 2012
  • In response of fungicides for control of gray snow mold, isolates of Typhula incarnata were collected from three golf courses in 2012 Yongpyeong, Korea and tested for sensitivity to propiconazole, tebuconazole and azoxystrobin fungicides. Four discriminatory concentrations were used to detect in vitro sensitivity of 50 isolates. Mean 50% effective concentration inhibiting mycelial growth ($EC_{50}$) values for tebuconazole was the lowest among the three fungicides. The $EC_{50}$ value of tebuconazole ranged from 0.0005 ${\mu}g\;ml^{-1}$ to 0.014 ${\mu}g\;ml^{-1}$ with a mean of 0.0048 ${\mu}g\;ml^{-1}$. The mean $EC_{50}$ values of propiconazole in triazole family was 0.5825 (0.78-1.651) ${\mu}g\;ml^{-1}$. $EC_{50}$ value of azoxystrobin ranged from 0.0017 ${\mu}g\;ml^{-1}$ to 0.131 ${\mu}g\;ml^{-1}$ with a mean of 0.0278 ${\mu}g\;ml^{-1}$. There was no correlation among $EC_{50}$ values for propiconazole, azoxystrobin and tebuconazole indicating no cross-resistance relationships with each other. Results of this study were confirmed no resistance isolates in vitro sensitivity of T. incarnata of three fungicides in Yongpyeong.

Fungicide Sensitivity among Isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti Species Complex Infecting Bell Pepper in Trinidad

  • Ramdial, Hema;Abreu, Kathryn De;Rampersad, Sephra N.
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Bell pepper is an economically important crop worldwide; however, production is restricted by a number of fungal diseases that cause significant yield loss. Chemical control is the most common approach adopted by growers to manage a number of these diseases. Monitoring for the development to resistance to fungicides in pathogenic fungal populations is central to devising integrated pest management strategies. Two fungal species, Fusarium incarnatum-equiseti species complex (FIESC) and Colletotrichum truncatum are important pathogens of bell pepper in Trinidad. This study was carried out to determine the sensitivity of 71 isolates belonging to these two fungal species to fungicides with different modes of action based on in vitro bioassays. There was no significant difference in log effective concentration required to achieve 50% colony growth inhibition ($LogEC_{50}$) values when field location and fungicide were considered for each species separately based on ANOVA analyses. However, the $LogEC_{50}$ value for the Aranguez-Antracol locationfungicide combination was almost twice the value for the Maloney/Macoya-Antracol location-fungicide combination regardless of fungal species. $LogEC_{50}$ values for Benomyl fungicide was also higher for C. truncatum isolates than for FIESC isolates and for any other fungicide. Cropping practices in these locations may explain the fungicide sensitivity data obtained.

Response of Systemic Fungicides of Rhizoctonia spp. Causing Rhizoctonia Blight on Turfgrass (잔디에 Rhizoctonia 마름병을 유발하는 Rhizoctonia spp.의 침투성 살균제에 대한 반응)

  • Chang, Taehyun;Lee, Seong Jun
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • The Rhizoctonia blight causing by Rhizoctonia spp. is an important disease of turfgrass, requiring fungicide application to maintain acceptable conditions for turfgrass good qualities in the golf course. The experiment was conducted to determine the mean 50% effective concentration inhibiting mycelial growth ($EC_{50}$) value of to flutolanil, pyraclostrobine and hexaconazole to Rhizoctonia solani AG-1 IB, Rhizoctonia cerealis and Rhizoctonia solani AG2-2IV isolated from Gyeongbuk province of Korea in vitro. Five discriminatory concentrations of each fungicide were used to detect in vitro sensitivity. The mean of $EC_{50}$ values to three systemic fungicides was the lowest isolate of R. solani AG-1 IB. However, the sensitivity of fungicides to Rhizoctonia solani AG2-2IV were higher mean $EC_{50}$ value of 0.026 ${\mu}g\;a.i.\;ml^{-1}$ of pyraclostrobine and 0.044 ${\mu}g\;a.i.\;ml^{-1}$ of flutolanil. R. cerealis was the lowest sensitivity to hexaconazole which was an average $EC_{50}$ value of 0.022 ${\mu}g\;a.i.\;ml^{-1}$. Inhibition of mycelial growth rate (%) by three combine fungicides using the $EC_{50}$ value of each fungicide was the highest R. solani AG2-2IV. Results of this study were may confirmed in vitro response fungicide of three Rhizoctonia species for control of Rhizoctonia blight in the field.

Sensitivity of Phytophthora infestans Isolates to Fungicides Metalaxyl and Ethaboxam in Korea

  • Kim, Byung-Sup;Zhang, Xuan-Zhe;Chung, Eun-Kyoung;Kim, Dal-Soo;Chun, Sam-Jae;Park, Woo-Bong
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.143-147
    • /
    • 2003
  • Sensitivity of Phytophthora infestans isolates to fungicides metalaxyl and ethaboxam in Korea was examined with 260 isolates for 3 years (9 isolates in 2000,93 isolates in 2001, and 158 isolates in 2002). Both Al and A2 mating types were found from the isolates collected for 3 years. Al mating type was dominant in the population with 8 isolates (88.9%) in 2000, 84 isolates (89.4%) in 2001, and 138 isolates (87.3%) in 2002. Only some isolates from diseased tomatoes in Buyergun and diseased potatoes in Pyeongchanggun were of the A2 mating type. As for metalaxyl sensitivity, 77.0% of the isolates were moderately resistant with 8 isolates (88.9%) in 2000, 73 isolates (77.7%) in 2001, and 120 isolates (75.9%) in 2002. Meanwhile, those found resistant were 1 isolate (11.1%) in 2000, 16 isolates (17.0%) in 2001, and 33 isolates (20.9%) in 2002. Only 5 isolates (3.2%) were sensitive to metalaxyl in 2002. There was no significant difference in the sensitivity among years. As for ethaboxam, no isolate was able to grow at 5.0 $\mu\textrm{g}$ /ml, and only four isolates (1.5 %) grew at 1.0 $\mu\textrm{g}$ /ml with heavy retardation compared with the untreated control. Based on these 3-year results, the minimum inhibitory concentration (MIC) of ethaboxam to p. infestans was determined to be 0.2-1.0 $\mu\textrm{g}$ /ml. Results indicate that resistance development by p. infestans to ethaboxam is not likely to occur in the natural condition. furthermore, there was no indication of cross resistance between metalaxyl and ethaboxam because all the isolates, regardless of classification for their sensitivity to metalaxyl, were not able to grow at 5.0 $\mu\textrm{g}$ /ml of ethaboxam.