• Title/Summary/Keyword: fusarium head blight

Search Result 49, Processing Time 0.03 seconds

Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

  • Goral, Tomasz;Stuper-Szablewska, Kinga;Busko, Maciej;Boczkowska, Maja;Walentyn-Goral, Dorota;Wisniewska, Halina;Perkowski, Juliusz
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.226-244
    • /
    • 2015
  • Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.

Development of a Selective Medium for Surveillance of Fusarium Head Blight Disease

  • Hosung Jeon;Jung Wook Yang;Donghwan Shin;Donggyu Min;Byung Joo Kim;Kyunghun Min;Hokyoung Son
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

Phenotypic and Marker Assisted Evaluation of Korean Wheat Cultivars

  • Jung, Yeonju;Park, Chul Soo;Jeung, Ji-Ung;Kang, Chon-Sik;Lee, Gi-An;Choi, Yu-Mi;Lee, Jung-Ro;Lee, Myung-Chul;Kim, Chung-Kon;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.273-281
    • /
    • 2011
  • Fusarium head blight (FHB), also known as scab, caused mainly by Fusarium graminearum is a devastating disease of wheat in regions that are warm and humid during flowering. In addition to significant yield and quality losses, the mycotoxin deoxynivalenol produced by the pathogen in infected wheat kernels is a serious problem for food and feed safety. Twenty- three Korean cultivars and "Sumai 3", which is a FHB-resistant Chinese cultivar were tested for Type I, Type II resistances of FHB. Three cultivars were identified as resistant in Type I assessment, and two cultivars were resistant in Type II assessment. Genetic variation and relationship among the cultivars were evaluated on the basis of 11 Simple Sequence Repeat (SSR) and 29 Sequence Tagged Site (STS) markers that were linked to FHB resistance Quantitative Trait Loci (QTL) on chromosome 3BS. One SSR and 7 STS markers detected polymorphisms. Especially, using a STS marker (XSTS3B-57), 32.4% of the variation for Type II FHB resistance could be explained. Genetic relationship among Korean wheat cultivars was generally consistent with their released year. These markers on chromosome 3BS have the potential for accelerating the development of Korean wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.

Chlorophyll a Fluorescence Parameters of Hulled and Hull-less Barley (Hordeum vulgare L.) DH Lines Inoculated with Fusarium culmorum

  • Warzecha, Tomasz;Skrzypek, Edyta;Adamski, Tadeusz;Surma, Maria;Kaczmarek, Zygmunt;Sutkowska, Agnieszka
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.112-124
    • /
    • 2019
  • Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the Fusarium species. The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to F. culmorum according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll a fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with Fusarium culmorum. Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll a fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by F. culmorum infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to F. culmorum infection.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Diversity and Pathogenicity of Fusarium Species Associated with Head Blight of Job's Tears (율무 이삭마름 증상에서 분리한 Fusarium속 균의 다양성 및 병원성)

  • Choi, Hyo-Won;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • Job's tears (Coix lacryma-jobi) is native to East Asia, and grains of the plant are used as health food and medicinal material. Head blight symptoms of the plant were frequently observed during disease surveys in Korea from 2006 to 2008. The symptoms were characterized as discoloration of husks, and subsequently inside of mature grains were shriveled or emptied. One hundred fifty nine isolates of Fusarium species were obtained from the disease symptoms of the plant collected from several locations in the country. Out of the isolates, the most frequently isolated Fusarium species were F. graminearum (34%), F. proliferatum (14.5%), F. verticillioides (10.1%), F. equiseti (6.9%), and F. fujikuroi (6.3%). Other Fusarium species isolated were F. subglutinans, F. semitectum, F. poae, and F. sporodochioides. Elongation factor 1 alpha gene sequences of the isolates were used for phylogenetic analysis. Analyses of the sequences revealed that the isolates were confirmed to be identical with each reference species of NCBI GenBank. Pathogenicity tests showed that F. graminearum, F. proliferatum and F. verticillioides were strongly virulent to grains of Job's tears. The present study is the first report of head blight of Job's tears caused by Fusarium species in Korea.

A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

  • Shin, Sanghyun;Kim, Kyeong-Hoon;Kang, Chon-Sik;Cho, Kwang-Min;Park, Chul Soo;Okagaki, Ron;Park, Jong-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Sook-Young;Lee, Yin-Won;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

Timing of Fusarium Head Blight Infection in Rice by Heading Stage

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.283-286
    • /
    • 2018
  • Fusarium graminearum causes the devastating plant disease Fusarium head blight and produces mycotoxins on small cultivated grains. To investigate the timeframe of F. graminearum infection during rice cultivation, a spore suspension of F. graminearum was applied to the rice cultivars Dongjin 1 and Nampyeongbyeo before and after the heading stage. The disease incidence rate was the highest (50%) directly after heading, when the greatest number of flowers were present, while only 10% of the rice infected 30 days after heading showed symptoms. To understand the mechanism of infection, an F. graminearum strain expressing green fluorescent protein (GFP) was inoculated, and the resulting infections were visually examined. Spores were found in all areas between the glume and inner seed, with the largest amount of GFP detected in the aleurone layer. When the inner part of the rice seed was infected, the pathogen was mainly observed in the embryo. These results suggest that F. graminearum migrates from the anthers to the ovaries and into the seeds during the flowering stage of rice. This study will contribute to uncovering the infection process of this pathogen in rice.

Response of Barley Genotypes to Fusarium Head Blight under Natural Infection and Artificial Inoculation Conditions

  • Khanal, Raja;Choo, Thin Meiw;Xue, Allen G.;Vigier, Bernard;Savard, Marc E.;Blackwell, Barbara;Wang, Junmei;Yang, Jianming;Martin, Richard A.
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.455-464
    • /
    • 2021
  • Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.