• Title/Summary/Keyword: gamma irradiation

Search Result 1,621, Processing Time 0.027 seconds

The Combined Effect of Gamma Knife Irradiation and p53 Gene Transfection in Human Malignant Glioma Cell Lines

  • Kim, Jeong-Eun;Paek, Sun-Ha;Kim, Dong-Gyu;Chung, Hyun-Tai;Kim, Young-Yim;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.48-53
    • /
    • 2005
  • Objective: The purpose of this study is to elucidate in vitro responses to combined gamma knife irradiation and p53 gene transfection on human malignant glioma cell lines. Methods: Two malignant human glioma cell lines, U87MG (p53-wild type) and U373MG (p53-mutant) were transfected with an adenoviral vector containing p53 (MOI of 50) before and after applying 20Gy of gamma irradiation. Various assessments were performed, including, cell viability by MTT assay; apoptosis by annexin assay; and cell cycle by flow cytometry, for the seven groups: mock, p53 only, gamma knife (GK) only, GK after LacZ, LacZ after GK, GK after p53, p53 after GK. Results: Cell survival decreased especially, in the subgroup transfected with p53 after gamma irradiation. Apoptosis tended to increase in p53 transfected U373 MG after gamma irradiation (apoptotic rate, 38.9%). The G2-M phase cell cycle arrest markedly increased by transfecting with p53, 48 hours after gamma knife irradiation in U373 MG (G2-M phase, 90.8%). Conclusion: These results suggest that the in vitro effects of combined gamma knife irradiation and p53 gene transfection is an augmentation of apoptosis and G2-M phase cell cycle arrest, which are more exaggerated in U373 MG with p53 transfection after gamma knife irradiation.

Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation

  • Cheon, Wonsu;Kim, Young Soo;Balaraju, Kotnala;Kim, Bong-Su;Lee, Byeong-Ho;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.460-468
    • /
    • 2016
  • To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.

Effect of Gamma Irradiation on the Microbial Safety and Biological Activities of Tuna Cooking Juices (감마선 조사에 따른 참치 자숙액의 위생화 및 기능성 변화 연구)

  • Byun, Myung-Woo
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2012
  • In this study, the effect of gamma irradiation on the microbial contamination and biological activities of tuna cooking juices was investigated. Tuna cooking juice was by-produced during the canning processing, and had various functional components. But, it was shown that the tuna cooking juice was seriously contaminated. Gamma irradiation effectively reduced the microbial population in tuna cooking juice. Also, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity, tyrosinse inhibitory activity, and ACE inhibitory activity of tuna cooking juices were all increased as a result of gamma irradiation. These results suggest that wasted tuna cooking juices can be used as a functional component in the food and cosmetic industries if the irradiation technology were applied.

Prevention Effect of Poly-gamma-glutamic Acid on Porcine Ligament Tissue Damage Induced by Gamma Irradiation (Poly-gamma-glutamic acid의 방사선 조사에 의한 인대 조직 손상 보호 효과)

  • Kim, Jeongsoo;Sung, Nak-Yun;Park, Jong-Heum;Kim, Jaekyung;Song, Beom-Seok;Lee, Ju-Woon;Lee, Kwang-Won;Kwon, Jung-Kee;Kim, Tae-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.165-169
    • /
    • 2012
  • This study was conducted to determine the prevention effect of poly-gamma-glutamic acid (${\gamma}-PGA$) on tissue damage induced by gamma irradiation for development of xenograft. Porcine tendons were treated at various doses of ${\gamma}-PGA$ (0.1, 0.5, 1 and 5%) and then gamma-irradiated (30 kGy). Prevention effects on tissue damage were measured as the result of tensile strength, hydroxyproline contents and viscosity of ${\gamma}-PGA$. Tensile strength was remarkably decrease in gamma-irradiated porcine ligament, but increased by ${\gamma}-PGA$ treated one. Among the ${\gamma}-PGA$ treatment doses, 1% treated group showed the highest values of tensile strength compared to non-treated group. Hydroxyproline contents was significantly increased by gamma irradiation, but decreased by the ${\gamma}-PGA$ treatment. Particularly, 1 and 5% ${\gamma}-PGA$ treated group were exhibited lower values of hydroxyproline contents than other group. In the result of viscosity, gamma-irradiated ${\gamma}-PGA$ (1%) was remarkably increased. Base on the results, it demonstrated that gamma irradiation induces severe alteration of mechanical property and collagen contents on porcine ligament, but ${\gamma}-PGA$ can effectively prevent these tissue damage.

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing;Kim, Ki Cheon;Chae, Sungwook;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.210-215
    • /
    • 2013
  • Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.

Sterilization of Freeze Dried Manila Clam (Ruditapes philippinarum) Porridge for Immuno-Compromised Patients

  • Song, Beom-Seok;Park, Jae-Nam
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.205-210
    • /
    • 2016
  • This study was conducted to evaluate the combined effect of gamma irradiation and different conditions (vacuum packaging, antioxidant and freezing) on the microbiological and sensory characteristics of freeze dried Manila clam porridge (MCP) for immuno-compromised patient food. MCP can be sterilized at 1 kGy to 10 kGy. The initial counts of total aerobic bacteria and yeast molds in the non-irradiated MCP were $2.4{\pm}0.5$ and $1.2{\pm}0.3{\log}\;CFU\;g^{-1}$, respectively, but gamma irradiation significantly decreased the total aerobic bacteria to below the detection limit ($1{\log}\;CFU\;g^{-1}$) (5 kGy). Moreover, gamma irradiation effectively eliminated yeasts/molds at dose below than 1 kGy. However, gamma irradiation accelerated the increase of lipid oxidation and therefore, decreased the sensory characteristics of MCP as irradiation dose increased. To improve the sensory qualities of gamma irradiated MCP, combination treatment (vacuum packaging, 0.1% vitamin C) were applied. There was no significant difference in the overall acceptance scores between the combined-treatment sample (5.6 points) and the non-irradiated samples (6.0). The results indicate that combination treatment (vacuum packaging, 0.1% vitamin C) may help to maintain the quality of MCP. Therefore, it considered that irradiation of MCP with combined treatment and this is an effective method for the consumption as a special purpose food such as for space travel or immuno-compromised patients.

Sanitizing and Extending of Shelf Life of Chicken Meat by Gamma Irradiation (계육의 위생화 및 안전 저장을 위한 감마선 조사)

  • 이주운;이경행;육홍선;이현자;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 1999
  • Microbial populations of total aerobic bacteria and coliforming bacteria, TBA, Hunter's color value, heme pigments, muscle protein solubility, cooking loss and shear force were investigated fro evaluating the shelf life of chicken legs gamma-irradiated at doses of 1, 3, 5 and 10 kGy with air-contained and vacuum-packaged methods. The initial microbial populations decreased with gamma irradiation depending upon the dose, and microorganisms in the vacuum-packaged samples were inhibited more than those in the air-contained samples. Hunter's L and a values of the surface and inside of the legs increased by gamma irradiation, showing a bright red color and the red color was maintained during the storage of both samples. The concentrations of oxymyoglobin among the heme pigments increased by gamma irradiation. Muscle protein solubility slightly increased by increasing the applied dose. There were no significant differences in the cooking loss and shear force values. In conclusion, the combination of gamma irradiation and vacuum-packaging could extend the shelf life of chilled chicken without deterioration of the quality.

  • PDF

Effect of Gamma-irradiation on the Quality Properties of Pork Jerky Prepared with Paprika and Japanese Apricot Extracts (감마선 조사가 파프리카와 매실 추출물로 제조된 돈육포의 품질특성에 미치는 영향)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.383-391
    • /
    • 2011
  • This study was conducted to investigate the applicability of gamma irradiation for improving the quality of paprika and Japanese apricot extract-treated nitrite free pork jerky. Pork jerky was gamma-irradiated at 0, 3, 5, 7 and 10 kGy and physiochemical properties such as proximate composition, 2-thiobarbituric acid (TBARS) values, color stability, texture, and sensory property were then evaluated. The results showed that the treatment of paprika and Japanese apricot extract to the pork jerky increased Hunter color value and texture property and at the same time decreased TBARS values. When gamma irradiated, natural pigment extract-treated pork jerky did not produce any change in its proximate composition (moisture, crude protein, crude lipid contents), and TBARS values. However, the redness (a-value) of pork jerky increased as the irradiation dose increased, whereas shear force of pork jerky was decreased. Sensory result showed that gamma irradiation induced to decrease the sensory scores. Therefore, these results suggest that gamma irradiation and the addition of paprika and Japanese apricot extracts could be an effective mean to improve color and texture of restructured pork jerky without use of nitrite.

A proposed new configuration of a shuffle-dwell gamma irradiator

  • Wu, Hsingtzu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3176-3180
    • /
    • 2022
  • A gamma irradiator is a well-developed installation for gamma radiation sterilization. A "shuffle-dwell" mode is preferable for high dose applications. A novel configuration of a shuffle-dwell gamma irradiator is proposed to increase energy utilization and throughput, which would result in higher profitability. While the minimum distance between any irradiation position and each source pencil, the minimum distance between the neighboring irradiation positions and the size of source pencils are kept the same as the current configuration, the irradiation positions and source pencils are rearranged based on the fact that radiation is emitted in an isotropic fashion. The computational results suggest that the proposed configuration requires an 8.7% smaller area and exposes the product to 11.8% more gamma radiation in a 10.7% shorter irradiation time. In other words, the proposed configuration needs a smaller area and shorter irradiation time to have a better performance compared to the current shuffle-dwell gamma irradiator. Note that the claim is based primarily on an analytical calculation. Experimental and manufacturing among other practical considerations will be taken into account in the future work to exhaustively evaluate the performance of the proposed configuration and to compare it with that of the traditional configuration.

Immunostimulating Effects of Angelica Gigas by Radio-Protective (당귀의 방사선 방호에 의한 생체면역 증진 효과)

  • Kim Kyung-Yoon;Jeong Hyun-Woo;Kim Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1256-1260
    • /
    • 2005
  • The purpose of this study was to investigate the effects of Angelica gigas on jejunal survival, endogenous spleen colony formation and jejunal crypt cells of mice irradiated with Gamma-ray irradiation. The subject of this study includes 42 mice which were divided into each 7 groups. Angelica gigas experiment groups were Angelica gigas + Gamma-ray(10Gy), Angelica gigas + Gamma-ray(3Gy), Angelica gigas. Gamma-ray(1 Gy), Gamma-ray control (10Gy), Gamma-ray control(3Gy), Gamma-ray control(1Gy), Normal groups. In the present study to evaluate the effect of Angelica gigas on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice Gamma-ray with each dose of Gamma-ray irradiation. The results of this study were as follows: In low-dose(1Gy) Gamma-ray radiation were treatment of Angelica gigas showed significantly increased(p<0.05) on the cell death apoptosis in crypt, intestine crypts survival of intestine after gamma-ray irradiation. High-dose(10Gy) Gamma-ray, treatment of Angelica gigas showed significantly increased(p<0.05) on the leukocyte. The above results suggest that Angelica gigas were immunostimulating effectively reduced Gamma-ray irradiation.