• Title/Summary/Keyword: gamma-irradiation

Search Result 1,621, Processing Time 0.03 seconds

Effects of External Whole-Body gamma-Irradiation on Embryos in Mice (Cobalt-60 gamma 선(線) 외부전신조사(外部全身照射)가 생쥐의 태아(胎兒)에 미치는 영향(影響))

  • Sung, Jai Ki
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 1975
  • In oder to investigate the effects of cobalt-60 gamma irradiation on the postnatal body gains and the other influece of the pregnant mice were subjected to single whole-body gamma irradiation externally. The results obtained were as follows: 1. The all mice of 400, 600, and 800 Rads gamma-irradiated groups showed abortion after prenatal gamma irradiation within 4 to 9 days. 2. There were significant differences of the postnatal body gains of mice between the control and treated groups (100 Rads and 200 Rads gamma irradiation). 3. The relation between gamma-irradiated doses and the postnatal growth rates of mice were inversly proportional.

  • PDF

Low-Dose Gamma Irradiation as Means of Isolating Carotenoid-Hyperproducing Yeast Mutant

  • Sun, Nam-Kyu;Lee, Seung-Hee;Ahn, Gil-Hwan;Won, Mi-Sun;Song, Kyung-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1010-1012
    • /
    • 2002
  • In order to isolate carotenoid-hyperproducing yeast, low-dose gamma irradiation was used as means of mutagenesis. Phaffia rhodozyma was treated by gamma irradiation of less than 10 kGy, which is considered to be a wholesome irradiation condition established by the Food and Drug Administration. Through repeated rounds of gamma irradiation and visual screening, mutant 3A4-8 was obtained. It produced a $3,824{\mu}g$ carotenoid/g yeast, 69% higher content than $2,265{\mu}g/g$ yeast of the unirradiated one. This result indicates that low-dose gamma irradiation could be used as means of mutagenesis to obtain carotenoid-hyperproducing strain of Phaffia rhodozyma, since only carotenoid-hyperproducing yeast survived gamma irradiation by scavenging oxygen radicals generated by radiolysis of water.

Application of Gamma Irradiation for Quality Improvement of Red Ginseng (홍삼의 품질개선을 위한 감마선 이용)

  • 변명우;조성기;조한옥;육흥선;김성애;최강주
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.3
    • /
    • pp.151-161
    • /
    • 1994
  • Gamma irradiation was applied to red ginseng for improving its quality. Irradiation at 5~7 kGy was effective for sterilizing all contaminated microorganisms of red ginseng. At the dose levels, no significant shanges in physicochemical properties (color, saponin, lipid rancidity and fatty acids etc.) were observed even after 6 months storage. Gamma irradiation was also effective for the improving hygienic quality of packed red ginseng with high moisture content (up to 20%), without any quality deterioration.

  • PDF

Effects of Gamma Irradiation on Nutrient Composition, Anti-nutritional Factors, In vitro Digestibility and Ruminal Degradation of Whole Cotton Seed

  • Hahm, Sahng-Wook;Son, Heyin;Kim, Wook;Oh, Young-Kyoon;Son, Yong-Suk
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Whole cotton seed (WCS) has become one of the major feed ingredients in TMR for dairy cattle in Korea, and WCS for feed use is mostly imported from abroad. Since this genetically modified oil seed is usually fed to the animal in raw state, its germination ability, if last long, often causes concerns about ecological disturbances. In the process of looking for effective conditions to remove germination ability of WCS this study had the objectives to evaluate the nutritional effects of gamma irradiation at doses of 8, 10 and 12 kGy on changes in nutrient contents, anti-nutritional factors, in vitro digestibility and ruminal degradability. No significant differences were found in proximate analysis of nutrients between raw WCS and gamma irradiated one. Glycine and threonine contents significantly increased when the WCS was exposed to gamma ray as compared to untreated WCS (p<0.05). As for fatty acid composition, no significant differences were observed with the irradiation treatment. Free gossypol in WCS was decreased (p<0.05) by gamma irradiation treatment. Of the 3 different levels of gamma irradiation, a dose of 12 kGy was found to be the most effective in reducing free gossypol concentration. Results obtained from in situ experiment indicated that gamma irradiation at a dose of 10 kGy significantly (p<0.05) lowered rumen degradability of both dry matter and crude protein as compared with raw WCS. However, there were no significant differences in rapidly degradable and potentially degradable fractions of crude protein due to 10 kGy gamma irradiation. Overall, this study show that gamma irradiation at a dose of 10 kGy is the optimum condition for removing germination ability of WCS, and could improve nutritive value for the ruminant with respect to the decrease in both ruminal protein degradability and gossypol content of WCS.

Comparative Effect of ${\gamma}$-Irradiation and Ozone Treatment for the Improvement of Hygienic Quality of Dried-Angelica Keiskei Koidz Powder (신선초 분말의 위생화를 위한 오존처리와 감미선 조사와의 비교 효과)

  • 변명우;육홍선;김정옥;김종군;이현자
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.2
    • /
    • pp.111-116
    • /
    • 1997
  • For the purpose of improving hygienic quality of dried-Angelica Keiskei Koidz powder, the effect of ozone treatment and gamma irradiation on the microbial decontamination and physicochemical properties were investigated. Gamma irradiation at 5 to 7.5 kGy resulted in sterilizing total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the total aerobic bacteria of the sample. The physicochemical properties of the sample were not changed by gamma irradiation up to 7.5 kGy, whereas, ozone treatment caused remarkable changes in pH, TBA value, chlorophyll, carotenoid and fatty acid compositions. Therefore, this investigation demonstrated conclusively that gamma irradiation was more effective than ozone treatment for decontaminating and sterilizing the dried-Angelica Keiskei Koidz powder, with minimal effect on the physicochemical properties analyzed.

  • PDF

Effects of Ozone Treatment and Gamma Irradiation on the Microbial Decontamination and Physicochemical Properties of Red Pepper Powder (고춧가루의 오염미생물 제거 및 이화확적 특성에 관한 오존처리와 감마선 조사의 영향)

  • 이성희;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.465-467
    • /
    • 1997
  • The comparative effects of ozone treatment and gamma irradiation on the sterilization, physicochemical properties and sensory quality of red pepper powder were investigated. As for the sterilization of microorganisms, 7.5~10 KGy of gamma irradiation completely eliminated the coliforms, yeast and molds, and total aerobic bacteria. On the other hand, ozone treatment failed to eliminate the highly contaminated microbial load, especially total aerobic bacteria. The physicochemical properties including capsaicin, capsanthin, browning, fatty acid compositions and sensory quality were not significantly changed by gamma irradiation up to 10 kGy, whereas ozone treatment caused significant changes in fatty acid compositions and destruction of natural pigments (p<0.05). The above results led us to conclude that gamma irradiation was more effective than ozone treatment for the sterilization and maintenance of physicochemical and sensory qualities of red pepper powders.

  • PDF

Effects of Gamma Irradiation on Microbial Decontamination, Extraction Yields and Physiological Effectiveness of Korean Medicinal Plants (한방약재의 오염 미생물 살균, 추출율 및 생리효능에 대한 감마선 조사의 영향)

  • Yook, Hong-Sun;Cha, Bo-Sook;Jo, Sung-Kee;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.581-589
    • /
    • 1998
  • Effects of gamma irradiation on hygienic quality, extraction yields and physiological effectiveness in twenty-one kinds of Korean medicinal plants were investigated. Gamma irradiation at $5{\sim}10\;kGy$ eliminated the microorganisms contaminated in Korean medicinal plants. The total extraction yield in fifteen kinds of Korean medicinal plants increased by $5{\sim}25%$ at 10 kGy gamma irradiation. The physiological effectiveness such as antioxidation, anticomplement functions, nitrite scavenging and electron donating abilities of medicinal plants exposed to 10 kGy gamma irradiation were not different from that of the nonirradiated control.

  • PDF

Effect of the Gamma-Ray Irradiation on the Electric and Optical Properties of SrTiO3 Single Crystals

  • Lee, Y.S.;Lim, Junhwi;Kim, E.Y.;Bu, Sang Don
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1566-1570
    • /
    • 2018
  • We investigated the visible emission property of $SrTiO_3$ (STO) single crystals irradiated with gammy-ray (${\gamma}$-ray) at various total doses up to 900 kGy. The electric and optical absorption properties of the irradiated STO samples were hardly changed with the ${\gamma}$-ray irradiation, compared with those of un-irradiated STO. In contrast, the visible emission near 550 nm increased with the ${\gamma}$-ray dose increasing. While the development of the visible emission was indicative of the increase of oxygen vacancies inside STO by the ${\gamma}$-ray irradiation, the newly generated oxygen vacancies were not significantly harmful to the electric and optical properties of STO. We concluded that the STO single crystal should have a good tolerance against the damage by the ${\gamma}$-ray irradiation.

Early Germination Response of Soybean Seed to Accelerated Aging and Low Dose Gamma Irradiation

  • Hwangbo, Jun-Kwon;Kim, Jae-Sung;Lim, Ji-Hyeok;Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.25-29
    • /
    • 2004
  • The responses of soybean seeds were evaluated to accelerated aging and gamma irradiation with regard to germination, seed leakage, seed leachate component and dry weight of hypocotyl and primary root of the germinating seed. Accelerated aging significantly reduced the final germination rate while gamma irradiation increased the final germination rate. Furthermore, the interactive effects occurred that the final germination rate of 5-day aged seeds increased considerably in response to 4 Gy of gamma irradiation. The extent to which the electrolyte was leaked from the seeds (conductivity) was significantly affected by accelerated aging and showed a close negative correlation with the germination rate. Gamma irradiation, however, did not significantly affect the electrical conductivity of seed leachate. The accelerated aging significantly increased the concentrations of the particular electrolytes leaked from the seeds while the gamma irradiation did not affect those concentrations. Of the electrolytes leaked from the seeds, Ca and Mg showed relatively lower concentrations while K showed greater concentrations than others. Moreover, N and P showed similar responses to aging treatment. Aging treatment significantly affected dry weight (DW) of hypocotyls and primary root. Also, gamma irradiation decreased DW of hypocotyls and primary root, particularly for 8 Gy associated with 5 days aging treatment. The data were discussed in terms of the relationships of seed vigor with aging treatment and gamma irradiation.

Assays of Residual Antibiotics after Treatment of γ-ray and UV Irradiation (감마선과 UV 조사에 의한 항생제 분해)

  • Shin, Ji-Hye;Nam, Ji-Hyun;Yu, Seungho;Lee, Myunjoo;Lee, Dong-Hun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and ${\gamma}-ray$ irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after ${\gamma}-ray$ and UV irradiation. Most samples were degraded by ${\gamma}-ray$ irradiation (1~2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with ${\gamma}-ray$ and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of ${\gamma}-ray$ irradiated cephradine measured by AMS test were 2 times higher than that of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that ${\gamma}-ray$ irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation.