• Title/Summary/Keyword: gas separation membranes

Search Result 287, Processing Time 0.027 seconds

Applications and a View of Gas Separation by Membranes in Japan (일본에서의 기체분리막의 현황 및 응용)

  • Nakagawa, Tsutomu
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.9-29
    • /
    • 1994
  • The development of separation technology is an important research subject as is clear from its role in the Japanese government's research and development program for basic technology for the next generation(1981~1990). Japan is poor not only in mineral resources but also in energy resources and if a sudden change occurs in oil producing facility or an accident occurs in a nuclear power plant, then energy policy must undergo changes and economic foundations may collapse. Japan has already experienced this. Although, oil prices are stable at present and Japan can import oil at low cost due to the yen appreciation, Japan needs to promote development work for any new energy crisis that may come in the future. This has been the motive for gas separation membrane development in Japan. The study of gas permeation through polymer membranes, which is the basis for membranes for gas separation, at Japanese universities began many years ago, but interest in membranes for gas separation was aroused mainly by the Government. The development of gas separation membranes in Japan started with membranes for oxygen separation on an industrial scale.

  • PDF

Microstructure and Pore Size Control of Silica Membrane for Gas Separation at Elevated Temperatures

  • Lee Kew-Ho;Sea Bongkuk;Lee Dong-Wook
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 2005
  • Among ceramic membranes developed to date, amorphous silica membranes are attractive for gas separation at elevated temperatures. Most of the silica membranes can be formed on a porous support by sol-gel or chemical vapor deposition (CVD) process. To improve gas permselectivity of the membrane, well-controlled pores having desired size and chemical affinity between permeates and membrane become important factors in the preparation of membranes. In this article, we review the literature and introduce our technologies on the microstructure to be solved and pore size control of silica membranes using sol-gel and CVD methods.

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Preparation and characterization of $C-SiO_2$ membranes modified by oxidation and their gas separation properties

  • Han, Sang-Hoon;Kim, Youn-Kook;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.180-183
    • /
    • 2004
  • Gas separation membranes are now used in a wide variety of application areas as oxygen enrichment, hydrogen recovery, acid gas treatment, and natural gas dehydration etc [1]. Since polymeric membranes offer attractive properties for gas separation application, they have been variously studied [2-4].(omitted)

  • PDF

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Research and Development Trends of Polyimide Based Material for Gas Separation (기체분리용 폴리이미드 소재의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.393-408
    • /
    • 2013
  • Gas separation processes using polymeric membranes have been greatly developed during the last few decades due to high energy efficiency and economic advantages. To achieve optimum economic performance, gas separation membranes required high permeability and selectivity. So, a number of reports examining the various polymeric materials for gas separation membranes have been published. Among the studied materials, polyimide (PI), which exhibit high permselectivity for various gas pairs, high chemical resistance, thermal stability, and mechanical strength, have attracted much attention. This paper focuses on the basic principle of gas separation, preparation procedure of membrane along with the recent developments and research trends of PI based materials for gas separation.

Molecular Dynamics (MD) Study of Polymeric Membranes for Gas Separation (기체 분리용 고분자 분리막의 분자동력학 연구)

  • Park, Chi Hoon;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.341-349
    • /
    • 2014
  • Molecular dynamics (MD) computer simulation is a very useful tool to calculate the trajectory and velocity of particles (generally, atoms), and thus to analyze the various structures and kinetic properties of atoms and molecules. For gas separation membranes, MD has been widely used for structure analysis of polymers such as free volume analysis and conformation search, and for the study of gas transport behavior such as permeability and diffusivity. In this paper, general methodology how to apply MD on gas separation membranes will be described and various related researches will be introduced.

Unusual Glassy Polymer Membranes for High Gas Permeation

  • Park, Ho-Bum;Jung, Chun-Ho;Han, Sang-Hoon;Lee, Young-Moo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.125-126
    • /
    • 2006
  • We show that thermal rearrangement of glassy polymers below the thermal degradation temperature can create unexpected and large microvoids in the membranes, leading to unexpected high gas permeability with high gas selectivity. These current polymer membranes display unexpected gas permeation-separation performance. There are above the upper-bound for conventional polymer membranes for several gas pairs. In the present study, molecular simulation, BET sorption, positron annihilation lifetime spectroscopy (PALS), and gas separation experiments were performed to characterize the unusual structure-property relationship of these rigid glassy polymer membranes.

  • PDF

Zeolite and Zeolite/Polymer Composite Membranes: Promises and Challenges (제올라이트막과 제올라이트/고분자 복합막의 전망과 도전)

  • Jeong, Hae-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.481-487
    • /
    • 2010
  • Recently membrane-based gas separation has attracted a great deal of research interests due to the growing demands on greener technologies. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases even though condensable gases such hydrocarbon isomers are much more attractive. This is primarily due to the limitations of polymer materials. Zeolites and their composites with polymer can offer alternative to current polymeric membranes owing to their superior separation and chemical/thermal properties. This review is intended to provide a brief overview on zeolite and zeolite/polymer composite membranes for gas separation applications.

PERMEATION OF CARBON DIOXIDE AND NITROGEN GASES THROUGH POLY(AMIDE-IMIDE)/POLYURETHANE AND POLYCARBONATE/POLYURETHANE BLEND MEMBRANES

  • Kim, Min-Joung;Sea, Bong-Kuk;Park, You-In;Youm, Kyung-Ho;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.87-89
    • /
    • 2003
  • Thermoplastic polyurethane(PU)-based blend membranes were prepared by the solvent evaporation process. The gas sorption, diffusion, and permeation properties of PU-based blend membranes have been studied. The morphology of PU-based blend membranes was investigated by SEM. The result showed that phase separation occurred with increasing blend ratio. $CO_2$ permeation behaviors of blend membranes were affect by blend composition. Thermoplastic polyurethane(PU)-based membranes showed high $CO_2$ permeation and $CO_2$/$N_2$ selectivity of the blend membrane was improved with increasing the blend ratio.

  • PDF