• Title/Summary/Keyword: gauge group

Search Result 176, Processing Time 0.03 seconds

Pain perception in 4-6-year-old children following intraoral dental injection with 26 and 31-gauge needles: a randomized controlled trial

  • Sneharaj N;Akhilesh Sharma;Madhusudhan Kempaiah Siddaiah;Priya Subramaniam
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.2
    • /
    • pp.101-108
    • /
    • 2024
  • Background: Administering anesthesia in dentistry can be distressing for patients, especially those with dental fear and anxiety. Needle pain during local anesthesia is a common concern in intraoral procedures. This study aimed to compare pain perception in 4-6-year-old children following intraoral dental injections with 26- and 31-gauge needles. Methods: Fifty healthy children were divided according to age into Group I (N = 25; 4-5 years) and Group II (N = 25; 5-6 years). Each group was further subdivided according to the needle gauge as follows: Group IA (26 gauge), Group IB (31 gauge), Group IIA (26 gauge), and Group IIB (31 gauge). Using a lottery method, the gauge of the needle to be used at the first visit for local anesthesia administration was selected. Children's reactions to pain were evaluated using a Modified Behavioral Pain Scale. Immediately after administration of local anesthesia, pain perception was evaluated using the Faces pain rating scale. In the subsequent visit, another needle gauge was used to administer local anesthesia, and the previously described evaluations were performed. At the third appointment, the child was shown both syringes and asked to choose one of the syringes they preferred, and the choice was noted. Results: When local anesthesia was administered using a 31-gauge needle, pain perception was similar between the two groups. In group II, the children demonstrated significantly higher arm and leg movements (P = 0.001). However, the difference was significant in group I alone (P < 0.001). Conclusion: Irrespective of age, anesthesia with a 31-gauge needle resulted in significantly lower pain perception than anesthesia with a 26-gauge needle.

Advancing the Gauge Block Interferometer and Automating the Gauge Block Calibration (게이지 블록 간섭계의 선진화 및 완전 자동화)

  • Kang Chu-Shik;Kim Jae-Wan;Suh Ho-Suhng;Lee Won-Kyu;Kim Jong-Ahn
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.547-550
    • /
    • 2005
  • Gauge blocks are the most widely used material measure in length field in industry. The gauge block interferometer, which is the gauge block measuring system, comprises Twyman-Green type interferometer optics and light sources having precisely known wavelengths. This paper describes the work done for advancing the measurement system and automating the measurement process. The advancing of the system was done mainly by exchanging the spectral lamp with the frequency stabilized lasers, and the automation of measurement was achieved by modifying the hardware and developing the automatic measuring software. As the results of this work, the contrast of interferometric fringes of gauge blocks longer than 100 mm s enhanced about 20 times, and the measurement time has reduced down to 50% by automation.

  • PDF

THE ACCURACY OF MEASUREMENTS DURING MODEL SURGERY FOR ORTHOGNATHIC PLANNING (악교정 수술을 위한 석고모형 수술시의 계측오차)

  • Lee, Sang-Hwy;Lee, Seung-Hoon;Ju, Hyeon-Ho;Won, Dong-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • The errors in orthognathic surgery can occur during the preoperative preparations including the model surgery, but till now there's been some lack of reserches about them. So we wanted to verify the accuracies in measurements used in model surgery. We compared the accuracy of measurements by vernier calipers, which has been the main measurement tool for conventional model surgery, and that by height gauge, which is recently claimed to be more accurate, with 3 dimensional coordinate analyzer. We could have following results and have a plan to use them for the invention of new model surgery techniques. 1. The measurement errors in Group 1, which mean the difference between "the measurements by 3-D analyzer"and "the measurements by height gauge", were small enough with the range of $0.1{\sim}0.2mm$ in all planes. 2. The mean error in Group 2, which is the differences between the measurements of 3-D analyzer and those of vernier calipers, was 1.1mm. 3. The measurement errors in Group 2 were variable according to the factors including the differences of individuality and expertness of each measurers. But in case of Group 1, they were small and not variable by the expertness. 4. The measurements were more accurate at the points in anterior teeth than in molar teeth in Group 1 and 2. 5. The errors after model surgery increased remarkably, compared with those before surgery in Group 2. And the situation was different in Group 1 in that errors decreased after surgery. According to these results, it assumed that the measurements with height gauge during the model surgery for orthognathic surgery are accurate enough and can be maintained, regardless of complexity of models, individuality, or expertness of measurers.

  • PDF

Calibration of the integrating sphere system for correcting the roughness effect in gauge block length measurement by using the Newton's rings interferometer (간섭무늬 분석을 통한 게이지 블록의 거칠기 효과 보정용 광산란장치 교정)

  • Kang C.S.;Kim J.W.;Cho M.J.;Kong H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.47-48
    • /
    • 2006
  • A roughness measuring system which comprises an integrating sphere and a stabilized laser has been fabricated with the aim of measuring the roughness correction value which is necessary in gauge block measurement by optical interferometry. To calibrate the system, a Newton's ring interferometer has been introduced. The method how to calibrate the roughness measurement system has been described.

  • PDF

A STRAIN GAUGE ANALYSIS OF IMPLANT-SUPPORTED CANTILEVERED FIXED PROSTHESIS UNDER DISTAL STATIC LOAD

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Chang, Ik-Tae;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.717-723
    • /
    • 2007
  • Statement of problem. Unreasonable distal cantilevered implant-supported prosthesis can mask functional problems of reconstruction temporarily, but it can cause serious strain and stress around its supported implant and surrounding alveolar bone. Purpose. The purpose of this study was to evaluate strain of implants supporting distal cantilevered fixed prosthesis with two different cantilevered length under distal cantilevered static load. Material and methods. A partially edentulous mandibular test model was fabricated with auto-polymerizing resin (POLYUROCK; Metalor technologies, Stuttgart, Swiss) and artificial denture teeth (Endura; Shofu inc., Kyoto, Japan). Two implants-supported 5-unit screw-retained cantilevered fixed prosthesis was made using standard methods with Type III gold alloy (Harmony C&B55; Ivoclar-vivadent, Liechtenstein, Germany) for superstructure and reinforced hard resin (Tescera; Ivoclar-vivadent, Liechtenstein, Germany) for occlusal material. Two strain gauges (KFG-1-120-C1-11L1M2R; KYOWA electronic instruments, Tokyo, Japan) were then attached to the mesial and the distal surface of each standard abutment with adhesive (M-bond 200; Tokuyama, Tokyo, Japan). Total four strain gauges were attached to test model and connected to dynamic signal conditioning strain amplifier (CTA1000; Curiotech inc., Paju, Korea). The stepped $20{\sim}100$ N in 25 N increments, cantilevered static load 8mm apart (Group I) or 16mm apart (Group II), were applied using digital push-pull gauge (Push-Pull Scale & Digital Force Gauge, Axis inc., Seoul, Korea). Each step was performed ten times and every strain signal was monitored and recorded. Results. In case of Group I, the strain values were surveyed by $80.7{\sim}353.8{\mu}m$ in Ch1, $7.5{\sim}47.9{\mu}m/m$ in Ch2, $45.7{\sim}278.6{\mu}m/m$ in Ch3 and $-212.2{\sim}718.7{\mu}m/m$ in Ch4 depending on increasing cantilevered static load. On the other hand, the strain values of Group II were surveyed by $149.9{\sim}612.8{\mu}m/m$ in Ch1, $26.0{\sim}168.5{\mu}m/m$ in Ch2, $114.3{\sim}632.3{\mu}m/m$ in Ch3, and $-323.2{\sim}-894.7{\mu}m/m$ in Ch4. Conclusion. A comparative statistical analysis using paired sample t-test about Group I Vs Group II under distal cantilevered load shows that there are statistical significant differences for all 4 channels (P<0.05).

Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene (CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발)

  • Dae-Yun Lim;Tae Won Ha;Chil-Hyoung Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

THE EFFECT OF PREPARATION PROCEDURE ON IMPLANT-ABUTMENT JOINT STABILITY (임플랜트 지대주의 삭제과정이 결합부 안정성에 미치는 영향)

  • Lee Jang-Wook;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.662-670
    • /
    • 2005
  • Statement of problem: Little is known about the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Purpose: This study evaluated the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Material and method: Six ITI implants (2 narrow-neck implants, 2 regular-neck implants, 2 wide-neck implants) and six Branemark implants (2 narrow platforms, 2 regular platforms, 2 wide platforms) were embedded in each acrylic resin block with epoxy resin. Eighteen $synOcta^(R)$ abutments (6 narrow-neck implant-abutments, 6 regular-neck implant-abutments, 6 wide-neck implant-abutments) and eighteen esthetic abutments (6 narrow platform-abutments, 6 regular platform-abutments, 6 wide platform-abutments) were tightened to each implant with digital torque gauge. Initial do-torque values were measured using digital torque gauge. After preparation of abutments, Final do-torque values were measured with digital torque gauge. Results and conclusion: 1. Screws loosening or abutments motion were not detected in all experimental group, but some scratches of implant-abutment joints were detected in all group 2. Reduction ratios of final do-torque values were greater than initial do-torque values in all measured group, except in narrow-neck implant-abutment group (p<0.05). 3. Reduction ratios of final do-torque values in wide-neck implant-abutment group were greater than regular-neck implant-abutment group (p<0.01). 4. The greatest standard deviation value was detected in wide platform group in both implant systems.