• Title/Summary/Keyword: gelatinization

Search Result 643, Processing Time 0.034 seconds

Physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 (분무건조공정을 이용한 유산균포집 미분의 제조 및 물리화학적 특성)

  • Park, Hye-Mi;Lee, Dae-Hoon;Jeong, Yoo-Seok;Jung, Hee-Kyoung;Cho, Jae-Gon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.392-398
    • /
    • 2015
  • The physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 were investigated. Amylose and damaged starch contents of spray-dried rice flour (S10, S20, S30, and S50) with L. plantarum CGKW3 were 14.18~17.75% and 24.65~34.08%, respectively. The particle size of spray-dried rice flour was $82.28{\sim}131.17{\mu}m$. The rice flour with L. plantarum CGKW3 showed a good powder flowability. The water absorption and water solubility of spray-dried rice flour were 1.96~2.13 and 9.91~21.95%, respectively. Thermal properties measured by differential scanning calorimeter revealed that the enthalpy (${\Delta}H$) for starch gelatinization were highest in the rice flour (S50) with L. plantarum CGKW3. When compared, the viable cell number of spray-dried rice flour were found to be in the following order: S10 (5.78 log CFU/g) < S20 (6.38 log CFU/g) < S30 (6.69 log CFU/g) < S50 (7.11 log CFU/g). The survaival rate of L. plantarum CGKW3 was 60.02-73.85%, which reflected the improvement in the quality of rice flour with an increase in treatment concentration. Based on our results, spray-dried rice flour with L. plantarum CGKW3 could be used in various types of rice foods.

Quality Characteristics of Pound Cake with Citrus mandarin Powder during Storage (감귤 분말을 첨가한 파운드케이크의 저장 중 품질 특성)

  • Park, Yeong-Sun;Shin, Sol;Shin, Gil-Man
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1022-1031
    • /
    • 2008
  • Pound cakes were prepared with Citrus mandarin powder(CMP) cultivated in JeJu Island, Korea. The impact of CMP amount level, which was incorporated into wheat flour by the ration of 0, 5, 10, 15, and 20% based on a flour weight, on the rheology and sensory profile of the pound cakes was measured. Moisture content of 13.70%, crude protein 5.12%, crude lipid 1.30%, crud ash 1.92%, respectively. Also evaluation was performed on the changes in physicochemical properties of the pound cakes during storage at 4 and $30^{\circ}C$. According to the amylogram, gelatinization temperature of the control dough was $63.35^{\circ}C$ and those of the dough with CMP were $63.85{\sim}66.55^{\circ}C$. Maximum viscosity of the dough was 686 B.U in the control, those were 575 B.U, 553 B.U, 504 B.U and 401 B.U in the dough with 5, 10, 15, and 20% CMP, respectively. The retrogradation degree(setback value) of CMP dough was $31{\sim}57%$ lower than that of the control dough under the same conditions. Water holding capacity of pound cake was increased gradually in proportion to the amount of CMP. The CMP addition decreased the brightuess(L) of pound cakes but increased redness(a) and yellowness(b). Hardness of pound cakes was significantly increased by CMP addition, while springiness, adhesiveness and cohesiveness were decreased. Based on sensory evaluation, pound cakes added with CMP were not significantly different in color and texture, while that of 10% CMP was significantly high in taste, flavor, and overall preferences, compared to the control. pH of pound cake with CMP was decreased during storage, showing that pH of CMP samples was lower than the control. Titrated acidity of pound cake with CMP was increased rapidly from storage for 10 days, which the changes in degree was fast in accordance with CMP amount. The Hunter's color value of pound cake with CMP was decreased, as the storage time proceeded. In the samples prepared with CMP, the firmness, adhesiveness, gumminess and chewiness was increased as the storage time proceeded, while springiness and cohesiveness was decreased.

  • PDF

The Additional Effects of Various Materials on Microwave Heating Property of Frozen Dough (품질개량제 첨가가 냉동반죽의 Microwave 가열특성에 미치는 영향)

  • Kim, Eun-Mi;Han, Hye-Kyung;Kim, In-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.873-881
    • /
    • 2005
  • This study was conducted to improve the properties of frozen dough foods (buns and noodles etc.) on the quality deterioration with microwave oven cooking. Microwave is a useful cooking method, but it quickly takes moisture from food surface and makes lowering food quality abruptly. For improvement of these problems, mixing doughs with addition of various additives of 34 types manufactured respectively; starches, modified starches, gums and emulsifiers etc. Each mixing dough produced in sheet type $(30{\times}30{\times}1mm)$ and steamed them, was quickly froze at $-70^{\circ}C$ and packed with polyethylene. Packed samples kept at $-20^{\circ}C$ for 48 hours. After they were steam or microwave treatment packed or non-packed with polyethylene, studied for improvement effects of quality as sensory evaluation and selected 6 type additives; modified starches (TA, ST), gums (AR, GA) and emulsifiers (E, S1) as improvement agent. Because moisture loss from microwave oven cooking leads to quality deterioration of frozen dough foods, additive, such as including starches, modified starch, gums, and emusifiers were added to improve dough properties. Amylogram, scanning electron microscopy, textural analysis, and differential scanning calorimetry revealed addition of additives improved textural properties including surface-hardening of frozen dough foods compared to the control.

Optimizing Ingredients Mixing Ratio of Mungbean Pancake (빈대떡의 재료혼합비율의 최적화)

  • Lee, J.H.;Shin, E.S.;Kweon, B.M.;Ryu, H.S.;Jang, D.H.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1274-1283
    • /
    • 2005
  • The sensory acceptability, texture profile analysis and nutritional evaluation were peformed in Korean traditional mungbean pancake (MPC) and modified MPC containing squid meat and soybean to standardize the recipes for healthy fast food market potentiality. Optimal ingredient formulations were revealed as mung-bean 55$\%$, pork 13$\%$ and vegetables 32$ \%$ for traditional MPC, and pork 3$\%$, squid 42$\%$ and soybean 55$\%$ for modified MPC using response surface methodology. Flavor and hardness correlated highly with overall accept-ability rather than appearance and color of traditional MPC. Higher squid levels raised adhesiveness, springi-ness and resiliences of modified MPC, but soybean decreased these textural attributes. Protein, lipid and total calorie of modified MPC were lower than those of traditional MPC. Computed protein efficiency ratio (C-PER) and degree of gelatinization of modified MPC were superior than traditional MPC.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Comparisons of Characteristics of Amaranth Starches Isolated from five Cultivars Grown in Korea (국내산 아마란스로부터 분리한 전분의 특성 비교)

  • Choi, Cha-Ran;Choi, Hun-Jae;Kim, Sung-Ran;Lee, Jae-Hak;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.252-257
    • /
    • 2000
  • The physicochemical and pasting properties of amaranth starches isolated from five cultivars, Andy, Suvarna, Nu World, K266-1, K432, grown in Korea, were investigated. The shapes of starch granules were all polygonal and size was in the range $1.14{\sim}1.48\;{\mu}m$ for all five cultivars. X-ray diffractograms were shown typical A type diffraction patterns for all amaranth starches. The protein and crude lipid contents of starches were $0.13{\sim}0.23%$ and $0.01{\sim}0.05%$, respectively. The apparent amylose contents ranged from $2.79{\sim}4.35%$ and the water binding capacities were $128.05{\sim}135.80%$. The transmittances of 0.1% amaranth starch suspensions except K266-1 increased rapidly above $65^{\circ}C$, thereafter increased slowely. The initial pasting and peak temperature ranges of five cultivars by RVA were $71.3{\sim}73.7^{\circ}C$ and $81.5{\sim}84.0^{\circ}C$, respectively. The peak and cooling viscosities followed the order : Nu World>Andy>Suvarna>K432>>K266-1. Nu World was shown the highest peak (166), final (103) and cooling viscosities (30 RVU). K266-I exhibited the lowest setback (-38) of all five cultivars. Gelatinization (To) and peak temperature (Tp) of amaranth starches in DSC thermograms were $65.7{\sim}68.0^{\circ}C$ and $70.6{\sim}75.8^{\circ}C$, respectively. Enthalpies followed the order: K266-1

  • PDF

A Medium-Maturing and Good Quality Japonica Rice Variety, "Cheongan" (벼 중생 고품질 신품종 "청안")

  • Yang, Sae-Jun;Kim, Yeon-Gyu;Choi, Im-Soo;Cho, Young-Chan;Hwang, Hung-Goo;Hong, Ha-Cheol;Kim, Myeong-Ki;Oh, Myung-Kyu;Shin, Young-Seop;Lee, Jeom-Ho;Choi, Yong-Hwan;Choi, In-Bea;Kang, Kyung-Ho;Yea, Jong-Doo;Lee, Jeong-Heui
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.649-653
    • /
    • 2009
  • "Cheongan" is a new japonica rice variety developed from a cross between SR15225-B-22-1-2-1 and Iksan431 in summer season, 1997 by National Institute of Crop Science, RDA. The line SR15225-B-22-1-2-1 has good canopy architecture and multi-disease and insect resistance, and Iksan431 has translucent milled rice and good eating-quality. Heading date of Cheongan is August 13 in central lowland and mid-mountainous areas. "Cheongan" having culm length of 84 cm shows relatively semi-erect pubescent leaf blade and rigid culm, tolerance to lodging with and good canopy architecture. This variety has 14 tillers per hill and 126 spikelets per panicle. It shows tolerance to heading delay and spikelet sterility comparable to Hwaseongbyeo when exposed to cold stress. Leaf senescence of Cheongan progresses slowly during the ripening stage and the viviparous germination ratio was 59 %, similar to that of Hwaseongbyo. "Cheongan" shows moderately resistance to blast disease, but susceptible to stripe virus and brown planthopper. The milled rice of "Cheongan" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows similar amylose content of 18.7%, gelatinization temperature, and similar palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.54 MT/ha at ordinary season culture in local adaptability test for three years. Especially, "Cheongan" has better milling properties of higher 98.4% and 73.9% in the percentage of head rice in milled rice and milling recovery of head rice, respectively, than those of Hwaseongbyeo. "Cheongan" could be adaptable to the central and mid-southern plain area, and mid-western coastal area of Korea.

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.

A Very Early-Maturing, Cold Tolerant and High Quality japonica Rice Variety 'Hanseol' (극조숙 고품질 내냉성 벼 신품종 '한설')

  • Lee, Jeong-Heui;Shin, Young-Seop;Jeong, O-Young;Kim, Myeong-Ki;Kim, Yeon-Gyu;Kim, Hong-Yeol;Lee, Jeom-Ho;Lee, Jeong-Il;Cho, Young-Chan;Jeon, Yong-Hee;Choi, Yong-Hwan;Yang, Chang-Ihn;Hong, Ha-Cheol;Won, Yong-Jae;Shin, Jin-Chul;Kim, Hyung-Yoon;Seo, Dae-Ha;Hwang, Hung-Goo;Yea, Jong-Doo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.632-637
    • /
    • 2010
  • 'Hanseol' is a new very early-maturing, cold tolerant and high quality japonica rice variety developed from a cross of 'Jinbu24' and 'Jinbu25' by the rice breeding team of National Institute of Crop Science (NICS), Rural Development Administration (RDA) in 2009. The heading date of this variety is July 25, which is four days earlier than check variety, 'Jinbubyeo'. 'Hanseol' has 65 cm of culm length, 99 spikelets per panicle, 82.9% of ripened grain rate, and 21.5 g of 1,000 grain-weight of brown rice. This variety shows susceptibility to bacterial leaf blight and virus diseases, and insect pests. It is tolerant to cold stress in terms of less heading delay and high fertility in cold water irrigated cultivation. This variety shows delayed leaf senescence and considerable tolerance to viviparous germination at ripening stage. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and medium-short grain. 'Hanseol' showed low gelatinization temperature and 6.1% protein content, 19.1% amylose content and good palatability of cooked rice. The milled rice yield of this variety is about 5.43 MT/ha at ordinary culture in local adaptability test for three years. 'Hanseol' would be highly adaptable to mid-north and mid-mountainous areas, and mid-northern alpine area in Korea.

A New Sweetpotato Cultivar for Use of Bioethanol 'Daeyumi' (바이오에탄올용 고구마 신품종 '대유미')

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Kwang-Ho;Bang, Jin-Ki;Song, Yeon-Sang;Shim, Hyeong-Kwon;Han, Seon-Kyeong;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.674-678
    • /
    • 2010
  • A new sweetpotato variety, 'Daeyumi', was developed by Bioenergy Crop Research Center, National Institute of Crop Science (NICS), RDA in 2008. This variety was obtained from the cross between 'Jinhongmi' and 'Xusju 18' in 2000. The seedling and line selections were performed from 2001 to 2003, preliminary and advanced yield trials were carried out from 2004 to 2005, and the regional yield trials were conducted at six locations from 2006 to 2008. 'Daeyumi' has cordate leaf, green vine and petiole, elliptic storage root, red skin and yellow flesh color of storage root. This variety is also resistant to Fusarium wilt and nematode. The starch value was 25.9%, ethanol yield was 418 L/Ton, which was 7% higher than that of 'Yulmi' variety, and the total sugar content was 2.47 g/100g, dry weight. 'Daeyumi's initial temperature of starch gelatinization was lower, 76.2$^{\circ}C$, and the retrogradation process was earlier than 'Yulmi'. The average yield of storage root was 27.8 ton/ha in the regional yield trials, which was 36% higher than that of 'Yulmi' variety. Number of storage roots over 50 gram per plant was 3.0, and the average weight of one storage root was 152 gram. This variety can be used for the production of bioethanol and starch processing.