• Title/Summary/Keyword: gene expression analysis

Search Result 3,357, Processing Time 0.033 seconds

Analysis and Subclass Classification of Microarray Gene Expression Data Using Computational Biology (전산생물학을 이용한 마이크로어레이의 유전자 발현 데이터 분석 및 유형 분류 기법)

  • Yoo, Chang-Kyoo;Lee, Min-Young;Kim, Young-Hwang;Lee, In-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.830-836
    • /
    • 2005
  • Application of microarray technologies which monitor simultaneously the expression pattern of thousands of individual genes in different biological systems results in a tremendous increase of the amount of available gene expression data and have provided new insights into gene expression during drug development, within disease processes, and across species. There is a great need of data mining methods allowing straightforward interpretation, visualization and analysis of the relevant information contained in gene expression profiles. Specially, classifying biological samples into known classes or phenotypes is an important practical application for microarray gene expression profiles. Gene expression profiles obtained from tissue samples of patients thus allowcancer classification. In this research, molecular classification of microarray gene expression data is applied for multi-class cancer using computational biology such gene selection, principal component analysis and fuzzy clustering. The proposed method was applied to microarray data from leukemia patients; specifically, it was used to interpret the gene expression pattern and analyze the leukemia subtype whose expression profiles correlated with four cases of acute leukemia gene expression. A basic understanding of the microarray data analysis is also introduced.

Gene Set and Pathway Analysis of Microarray Data (프마이크로어레이 데이터의 유전자 집합 및 대사 경로 분석)

  • Kim Seon-Young
    • KOGO NEWS
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • Gene set analysis is a new concept and method. to analyze and interpret microarray gene expression data and tries to extract biological meaning from gene expression data at gene set level rather than at gene level. Compared with methods which select a few tens or hundreds of genes before gene ontology and pathway analysis, gene set analysis identifies important gene ontology terms and pathways more consistently and performs well even in gene expression data sets with minimal or moderate gene expression changes. Moreover, gene set analysis is useful for comparing multiple gene expression data sets dealing with similar biological questions. This review briefly summarizes the rationale behind the gene set analysis and introduces several algorithms and tools now available for gene set analysis.

  • PDF

NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets

  • Han, Heonjong;Lee, Sangyoung;Lee, Insuk
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.579-588
    • /
    • 2019
  • Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

Gene Expression Analysis of Acetaminophen-induced Liver Toxicity in Rat (아세트아미노펜에 의해 간손상이 유발된 랫드의 유전자 발현 분석)

  • Chung, Hee-Kyoung
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • Global gene expression profile was analyzed by microarray analysis of rat liver RNA after acute acetaminophen (APAP) administration. A single dose of 1g/kg body weight of APAP was given orally, and the liver samples were obtained after 24, 48 h, and 2 weeks. Histopathologic and biochemical studies enabled the classification of the APAP effect into injury (24 and 48 h) and regeneration (2 weeks) stages. The expression levels of 4900 clones on a custom rat gene microarray were analyzed and 484 clones were differentially expressed with more than a 1.625-fold difference(which equals 0.7 in log2 scale) at one or more time points. Two hundred ninety seven clones were classified as injury-specific clones, while 149 clones as regeneration-specific ones. Characteristic gene expression profiles could be associated with APAP-induced gene expression changes in lipid metabolism, stress response, and protein metabolism. We established a global gene expression profile utilizing microarray analysis in rat liver upon acute APAP administration with a full chronological profile that not only covers injury stage but also later point of regeneration stage.

Correlation Analysis between Regulatory Sequence Motifs and Expression Profiles by Kernel CCA

  • Rhee, Je-Keun;Joung, Je-Gun;Chang, Jeong-Ho;Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.63-68
    • /
    • 2005
  • Transcription factors regulate gene expression by binding to gene upstream region. Each transcription factor has the specific binding site in promoter region. So the analysis of gene upstream sequence is necessary for understanding regulatory mechanism of genes, under a plausible idea that assumption that DNA sequence motif profiles are closely related to gene expression behaviors of the corresponding genes. Here, we present an effective approach to the analysis of the relation between gene expression profiles and gene upstream sequences on the basis of kernel canonical correlation analysis (kernel CCA). Kernel CCA is a useful method for finding relationships underlying between two different data sets. In the application to a yeast cell cycle data set, it is shown that gene upstream sequence profile is closely related to gene expression patterns in terms of canonical correlation scores. By the further analysis of the contributing values or weights of sequence motifs in the construction of a pair of sequence motif profiles and expression profiles, we show that the proposed method can identify significant DNA sequence motifs involved with some specific gene expression patterns, including some well known motifs and those putative, in the process of the yeast cell cycle.

  • PDF

Considerations on gene chip data analysis

  • Lee, Jae-K.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.08a
    • /
    • pp.77-102
    • /
    • 2001
  • Different high-throughput chip technologies are available for genome-wide gene expression studies. Quality control and prescreening analysis are important for rigorous analysis on each type of gene expression data. Statistical significance evaluation of differential expression patterns is needed. Major genome institutes develop database and analysis systems for information sharing of precious expression data.

  • PDF

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering

  • Chang, Jeong-Ho;Chi, Sung Wook;Zhang, Byoung Tak
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.

Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Moreno, Jose;Jacome-Lopez, Karina;Zentella-Dehesa, Alejandro;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2519-2525
    • /
    • 2016
  • There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile.

Hierarchical Clustering of Gene Expression Data Based on Self Organizing Map (자기 조직화 지도에 기반한 유전자 발현 데이터의 계층적 군집화)

  • Park, Chang-Beom;Lee, Dong-Hwan;Lee, Seong-Whan
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.170-177
    • /
    • 2003
  • Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.

  • PDF