• Title/Summary/Keyword: gene knock-out

Search Result 73, Processing Time 0.024 seconds

Effect of the pat, fk, stpk Gene Knock-out and mdh Gene Knock-in on Mannitol Production in Leuconostoc mesenteroides

  • Peng, Yu-Wei;Jin, Hong-Xing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2009-2018
    • /
    • 2018
  • Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study we modified the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains for mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deletion strain (${\Delta}pat::amy$), the fk gene (which encodes fructokinase) deletion strain (${\Delta}fk::amy$) and the stpk gene (which encodes serine-threonine protein kinase) deletion strain (${\Delta}stpk::amy$) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1%, respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (${\Delta}pat::mdh$, ${\Delta}fk::mdh$ and ${\Delta}stpk::mdh$) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ${\Delta}dts{\Delta}ldh{\Delta}pat::mdh{\Delta}stpk::mdh{\Delta}fk::mdh$ had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.

Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus

  • Kim, Ji-Woo;Kim, Hye-Min;Lee, Sang-Mi;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1473-1480
    • /
    • 2012
  • The Galactose-${\alpha}1$,3-galactose (${\alpha}1$,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of ${\alpha}1$,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu;Park, Joong Jean;Cha, Seok Ho;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.745-753
    • /
    • 2008
  • Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.

Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus (돼지 $\beta$-Casein을 이용한 EGFP 발현 Knock-in 벡터의 구축 및 발현 검증)

  • Lee, Sang-Mi;Kim, Hey-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig (α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포)

  • Kim, Ji Woo;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.59-67
    • /
    • 2015
  • Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

Comparison of RNA Interference-mediated Gene Silencing and T-DNA Integration Techniques for Gene Function Analysis in Chinese Cabbage (RNA Interference 및 T-DNA Integration 방법에 의한 배추 기능유전자 Silencing 효과 비교)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.734-742
    • /
    • 2012
  • To compare RNA interference-mediated gene silencing technique and T-DNA integration for gene function analysis in Chinese cabbage, BrSAMS-knockout (KO) line and BrSAMS-knockdown (KD) line were used. The KO line had lost the function of a Brassica rapa S-adenosylmethionine synthetase (BrSAMS) gene by T-DNA insertion and the KD line had shown down-regulated BrSAMS genes' expression by dsRNA cleavage. From microarray results of the KO and KD lines, genes linked to SAMS such as sterol, sucrose, homogalacturonan biosynthesis and glutaredoxin-related protein, serine/threonine protein kinase, and gibberellin-responsive protein showed distinct differences in their expression levels. Even though one BrSAMS gene in the KO line was broken by T-DNA insertion, gene expression pattern of that line did not show remarkable differences compared to wild type control. However, the KD line obtained by RNAi technique showed prominent difference in its gene expression. Besides, change of polyamine and ethylene synthesis genes directly associated with BrSAMS was displayed much more in the KD line. In the microarray analysis of the KO line, BrSAMS function could not be clearly defined because of BrSAMS redundancy due to the genome triplication events in Brassicaceae. In conclusion, we supposed that gene knock-down method by RNAi silencing is more effective than knock-out method by T-DNA insertion for gene function analysis of polyploidy crops such as Chinese cabbage.

Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis (Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제)

  • Kang, Hyun-Woo;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Streptomyces is well known for their ability to synthesize enormous varieties of antibiotics as secondary metabolites. Among them, S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. However, S. avermitilis also produces oligomycin, which is a potential toxic inhibitor of oxidative phosphorylation in mammalian cells. Therefore, we decided to disrupt oligomycin synthetase gene to prevent co-production of oligomycin in S. avermitilis. To create plasmid for disruption, the smallest gene of oligomycin synthetase gene cluster was obtained by PCR from S. avermitilis chromosome. Then, apramycin resistance gene was inserted in oligomycin synthetase gene for selection. After transformation of this plasmid, oligomycin synthetase gene (olmA5) in the chromosome was displaced with disruption cassette on the plasmid via homologous recombination. As a result of this gene replacement, we obtained mutants (olmA5::apra) that no longer makes the toxic oligomycin. And the mutants confirmed by PCR and HPLC analysis. However, showed no increasement of avermectin production in the mutant was observed.

Efficient Gene Targeting using Nuclear Localization Signal (NLS) and Negative Selection Marker Gene in Porcine Somatic Cells

  • Kim, Hye Min;Lee, Sang Mi;Park, Hyo Young;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.71-77
    • /
    • 2014
  • The specific genetic modification in porcine somatic cells by gene targeting has been very difficult because of low efficiency of homologous recombination. To improve gene targeting, we designed three kinds of knock-out vectors with ${\alpha}1,3$-galactosyltransferase gene (${\alpha}1,3$-GT gene), DT-A/pGT5'/neo/pGT3', DT-A/NLS/pGT5'/neo/pGT3' and pGT5'/neo/ pGT3'/NLS. The knock-out vectors consisted of a 4.8-kb fragment as the 5' recombination arm (pGT5') and a 1.9-kb fragment as the 3' recombination arm (pGT3'). We used the neomycin resistance gene (neo) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. These vectors have a neo gene insertion in exon 9 for inactivation of ${\alpha}1,3$-GT locus. DT-A/pGT5'/neo/pGT3' vector contain only positive-negative selection marker with conventional targeting vector. DT-A/NLS/pGT5'/neo/pGT3' vector contain positive-negative selection marker and NLS sequences in upstream of 5' recombination arm which enhances nuclear transport of foreign DNA into bovine somatic cells. pGT5'/neo/pGT3'/NLS vector contain only positive selection marker and NLS sequence in downstream of 3' recombination arm, not contain negative selectable marker. For transfection, linearzed vectors were introduced into porcine ear fibroblasts by electroporation. After 48 hours, the transfected cells were selected with $300{\mu}g/ml$ G418 during 12 day. The G418-resistant colonies were picked, of which 5 colonies were positive for ${\alpha}1,3$-GT gene disruption in 3' PCR and southern blot screening. Three knock-out somatic cells were obtained from DT-A/NLS/ pGT5'/neo/pGT3' knock-out vector. Thus, these data indicate that gene targeting vector using nuclear localization signal and negative selection marker improve targeting efficiency in porcine somatic cells.

Development of a toxA Gene Knock-out Mutant of Pasteurella multocida and Evaluation of its Protective Effects

  • Kim Tae-Jung;Lee Jae-Il;Lee Bong-Joo
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.320-326
    • /
    • 2006
  • Pasteurella multocida is an important veterinary and opportunistic human pathogen. In particular, strains of P. multocida serogroup D cause progressive atrophic rhinitis, and produce a potent, intracellular, mitogenic toxin known as P. multocida toxin (PMT), which is encoded by the toxA gene. To further investigate the toxigenic and pathogenic effects of PMT, a toxA-deleted mutant was developed by homologous gene recombination. When administrated to mice, the toxigenicity of the toxA mutant P. multocida was drastically reduced, suggesting that the PMT constributes the major part of the toxigenicity of P, multocida. Similar results were obtained in a subsequent experiment, while high mortalities were observed when toxA(+) P. multocida bacterial culture or culture Iysate were administrated. Mice immunized with toxA(-) P. multocida were not protected (none survived) following challenge with toxA(+) P. multocida or bacterial culture Iysate (toxin). These results suggest that the toxigenicity of P. multocida is mainly derived from PMT.

Constructing Gene Regulatory Networks using Knock-out Data (Knock-out 데이터를 이용한 유전자 조절망의 구성)

  • Hong, Sung-Ryong;Sohn, Ki-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.105-113
    • /
    • 2007
  • A gene regulatory network is a network of genes representing how genes influence the activities of other genes. Nowadays from microarray experiments, a large number of measurements on the expression levels of genes are available. One of typical data is the so-called "steady-state model" data measuring the expression levels of other genes after knocking out a particular gene. This paper shows how to reverse engineer a parsimonious gene regulatory network, using these measurement data. Our model considers auto-regulation, which forms a cycle in a genetic network. We also model repressor and enhancer roles of genes. which are not considered in previous known methods.

  • PDF