• Title/Summary/Keyword: ginsenoside Rg5

Search Result 320, Processing Time 0.029 seconds

Metabolism of Ginsenoside Rg5, a Main Constituent Isolated from Red Ginseng, by Human Intestinal Microflora and Their Antiallergic Effect

  • Shin, Yong-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1791-1798
    • /
    • 2006
  • When ginsenoside Rg5, a main component isolated from red ginseng, was incubated with three human fecal microflora for 24 h, all specimens showed hydrolyzing activity: all specimens produced ginsenoside Rh3 as a main metabolite, but a minor metabolite $3{\beta},12{\beta}$-dihydroxydammar-21(22),24-diene (DD) was observed in two specimens. To evaluate the antiallergic effect of ginsenoside Rg5 and its metabolites, the inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 against RBL-2H3 cell degranulation, mouse passive cutaneous anaphylaxis (PCA) reaction induced by the IgE-antigen complex, and mouse ear skin dermatitis induced by 12-O-tetradecanoilphorbol-13-acetate (TPA) were measured. Ginsenosides Rg5 and Rh3 potently inhibited degranulation of RBL-2H3 cells. These ginsenosides also inhibited mRNA expression of proinflammatory cytokines IL-6 and $TNF-{\alpha}$ in RBL-2H3 cells stimulated by IgE-antigen. Orally and intraperitoneally administered ginsenoside Rg3 and orally administered ginsenoside Rg5 to mice potently inhibited the PCA reaction induced by IgE-antigen complex. However, intraperitoneally administered ginsenoside Rg5 nearly did not inhibit the PCA reaction. These ginsenosides not only suppressed the swelling of mouse ears induced by TPA, but also inhibited mRNA expression of cyclooxygenase-2, $TNF-{\alpha}$, and IL-4 and activation of transcription factor NF-kB. These inhibitions of ginsenoside Rh3 were more potent than those of ginsenoside Rg5. These findings suggest that ginsenoside Rg5 may be metabolized in vivo to ginsenoside Rh3 by human intestinal microflora, and ginsenoside Rh3 may improve antiallergic diseases, such as rhinitis and dermatitis.

Inhibitory Effect of Ginsenoside Rg5 and Its Metabolite Ginsenoside Rh3 in an Oxazolone-Induced Mouse Chronic Dermatitis Model

  • Shin, Yong-Wook;Bae, Eun-Ah;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.685-690
    • /
    • 2006
  • The effect of a main constituent ginsenoside Rg5 isolated from red ginseng and its metabolite ginsenoside Rh3 in a chronic dermatitis model was investigated. Ginsenosides Rg5 and Rh3 suppressed swelling of oxazolone-induced mouse ear contact dermatitis. These ginsenosides also reduced mRNA expressions of cyclooxygenase-2, interleukin $(IL)-1{\beta}$, tumor necrosis factor $(TNF)-{\alpha}$ and interferon $(IFN)-{\gamma}$. The inhibition of ginsenoside Rh3 was more potent than that of ginsenoside Rg5. These findings suggest that ginsenoside Rh3 metabolized from ginsenoside Rg5 may improve chronic dermatitis or psoriasis by the regulation of $IL-1{\beta}$ and $TNF-{\alpha}$ produced by macrophage cells and of $IFN-{\gamma}$ produced by Th cells.

Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells

  • Wei Xia;Zongdong Zhu;Song Xiang;Yi Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.784-794
    • /
    • 2023
  • Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

Effects of Ginsenoside Rg3 Epimers on Swine Coronary Artery Contractions

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The previous reports demonstrated that ginseng saponins, active ingredient of Panax ginseng, inhibited blood vessel contraction induced by various hormones or high $K^+$. Recently, we demonstrated that 20(R)- and 20(S)-ginsenoside $Rg_3$. regulate ion channel activities with differential manners. The aim of this study was to examine whether ginsenoside $Rg_3$ isomers also show differential effects on swine coronary artery contractionresponses induced by high $K^+$, serotonin (5-HT) or acetylcholine. Treatment of 20(S)- but not 20(R)-ginsenoside $Rg_3$ caused a concentration-dependent relaxation of coronary artery contracted by 25mM KCI. 20(S)- and 20(R)-ginsenoside $Rg_3$ induced significant relaxations of coronary artery contraction induced by 5-HT $(3{\mu}M)$ in the presence of endothelium with concentration-dependent manner and, also in the absence of endothelium only 20(S)-ginsenoside $Rg_3$ induced a strong Inhibition of coronary artery contraction induced by 5-HT in a concentration-dependent manner. 20(S)-ginsenoside $Rg_3$ caused relaxation of coronary artery in the absence and presence of endothelium. In contrast, treatment of 20(S)- and 20(R)-ginsenoside $Rg_3\;(100{\mu}M)$ did not show significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the presence of endothelium, whereas both isomers caused significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the absence of endothelium in a concentration-dependent manner. These findings indicate that 20(S)-or 20(R)-ginsenoside $Rg_3$ exhibits differential relaxation eff3cts of swine coronary artery contractions caused by high $K^+$, acetylcholine, and 5-HT treatment and that this differential vasorelaxing effects of ginsenoside $Rg_3$ isomers also might be dependent on endothelium.

Changes of Prosapogenin Components in Tienchi Seng (Panax notoginseng) by Ultrasonic Thermal Fusion Process

  • Lee, Jae Bum;Yang, Byung Wook;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.10-17
    • /
    • 2021
  • The purpose of this study is to develop a new method of producing tienchi seng (notoginseng, Panax notoginseng) extracts featuring high concentrations of the ginsenoside Rg3, Rg5, and Rg6, special components of Korean red ginseng. The chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by HPLC. Tienchi seng was heat-processed at 100℃ and the optimum conditions were identified. The highest concentrations of total saponin (29.723%) and the ginsenoside Rg3 (1.769%), Rg5 (5.979%), and Rg6 (13.473%) were produced at 48 hours. Also, when tienchi seng was subjected to the ultrasonic thermal fusion (100℃) process, the concentrations of total saponin (30.578%), ginsenoside Rg3 (2.392%), Rg5 (6.614%), and Rg6 (13.017%) were highest at 36 hours. On the other hand, the 2-hour heat-processed extract and 2-hour ultrasonic thermal fusion-processed extract did not contain ginsenoside Rg3, Rg5, and Rg6. The ultrasonic thermal fusion process had an extraction yield that was approximately 1.26 times greater than that of the heat process. These results indicate that the highly functional tienchi seng extracts created through the ultrasonic thermal fusion process are more industrially useful than those produced using the heat process.

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng (인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.255-263
    • /
    • 2020
  • Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.

Study on Antiangiogenic Effect of Black Ginseng Radix (흑삼의 신생혈관 억제활성에 대한 연구)

  • Song, Gyu-Yong;Chung, Kyu-Jin;Shin, Young-Jin;Lee, Gye-Won;Lee, Sook-Young;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • Objectives : This study was performed to investigate the influence of black ginseng radix extracts (BG) and ginsenoside Rg3, Rg5 on basic fibroblast growth factor (bFGF) induced proliferation, migration and capillary tubule-like formation of human umbilical vein endothelial cells (HUVECs). Methods : HUVECs were cultured with BG and ginsenoside Rg3, Rg5 at different concentrations (60, 125, 250, 500, $1,000{\mu}g/m\ell$) for 2 day In the presence of bFGF, respectively. XTT was used to detect the proliferation. Migration and tube formations were examined to detect the antiangiogenesis. Also, the chick embryo chorioallantoic membrane (CAM) assay was performed to detect the antiangiogenesis. Results : BG and ginsenoside Rg3, Rg5 significantly inhibited bFGF-induced endothelial cell proliferation and migration in a dose-dependent manner. Tube formation in bFGF-induced HUVECs were suppressed by BG and ginsenoside Rg3, Rg5. Moreover, BG and ginsenoside Rg3, Rg5 (30-$50{\mu}g$/egg) inhibited new blood vessel formation on the growing CAM. Conclusions:Based on the present results, it can be suggested that BG has a potential chemopreventive agent via antiangiogenesis.

The Conversion of Ginsenosides by Extrusion Molding (압출성형에 의한 ginsenoside의 변환)

  • Ryu, Jae-Hyung;Li, Chun-Ying;Ahn, Moon-Sub;Kim, Jang-Won;Kang, Wie-Soo;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Ginseng treated with several treatment conditions of various acids to search hydrolysates on the basis of increased biological activity and modified structure. In the result of acid treatment, the conversion rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with citric acid. After added citric acid to ginseng extract, boiled at l00$^{\circ}C$ for 1 hour and add enzyme, which is examined change by time. It compared with group which did not treated acid. Two groups became difference according to enzyme but the generation rate of ginsenoside Rg3, Rk1 and Rg5 did not show difference greatly. Also, the generation rate of ginsenoside Rg3, Rk1 and Rg5 by time passes did not show difference. The generation rate of ginsenoside Rg3, Rk1 and Rg5 increased when increased acid concentration, temperature and time. We did exclusion molding to shorten treatment time. In the result of ginseng treated with citric acid of various concentrations at various temperatures as time passes by extrusion molding, the generation rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with 3% citric acid at l60$^{\circ}C$ for 20 minutes. In addition, total saponin amount of ginseng treated with 3% citric acid at 160$^{\circ}C$ for 20 minutes was about 11% higher than ginseng heated at 120$^{\circ}C$ for 3 hours. These results indicated that our exclusion molding process more effective, compared to traditional red ginseng manufacturing process.