• Title/Summary/Keyword: glass ionomer cement

Search Result 226, Processing Time 0.02 seconds

A STUDY ON BONDING STRENGTH OF DENTAL AMALGAM TO GLASS IONOMER CEMENT FOLLOWING SURFACE TREATMENT (글라스아이오노머 시멘트 표면 처리에 따른 치과용 아말감의 전단 결합 강도에 관한 연구)

  • Shin, Young-Joo;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.217-230
    • /
    • 1994
  • The purpose of this study was to assess the 24-hour shear bond strength of amalgam to glass ionomer cement, using five different intermediaries. The intermediaries used in this study were Scotchbond 2 (light curing dentin adhesive), Panavia (resin cement), liquid' of glass ionomer cement (chemical curing & light curing), and uncured mixture of light curing glass ionomer cement. This study was operated with 48 specimens devided into 6 groups. The experimental groups are as follows: Group 1 : Bonded Amalgam to chemical curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 2 : Bonded Amalgam to light curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 3: Bonded Amalgam to light curing glass ionomer cement with resin cement. Group 4: Bonded Amalgam to light curing glass ionomer cement with light curing dentin adhesive. Group 5: Bonded Amdlgam to light curing glass ionomer cement with liquid of light curing glass ionomer. Group 6: Bonded Amalgam to light curing glass ionomer cement with uncured mixture of light curing glass ionomer cement. 30 minutes after amalgam condensation, all specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron (1122). The following results obtained: 1. The shear bond strength of group 6 was higher than those of the other groups (46.7 kgf/$cm^2$, p<0.05). 2. The shear bond strength of resin cement intermediary group was lower than that of the group using uncured mixture of light curing glass ionomer cement. 3. The results of group 1 and group 2 were different, even though the inter-me diaries used were same. 4. Intermediary of Group 5 did not show complete set in Scanning Electromicroscopic examination. 5. Light-curing dentin adhesive did not show any bonding ability to amalgam.

  • PDF

THE EFFECT OF EARLY WATER CONTACT ON GLASS-IONOMER CEMENTS (Glass ionomer cement초기 경화시 수분접촉의 영향에 관한 연구)

  • Um, Chung-Moon;Oilo, Gudbrand
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.507-513
    • /
    • 1993
  • The purpose of this study was to observe the effect of immersion in water at 3, 5, 7, and 10 minutes after mixing on the surface of three regular and one light-curing glass-ionomer cement by measuring penetration of a methylene blue solution. Early solubility of these cements was also measured and compared with that of a zinc phosphate and a polycarboxylate cement. A blue-stained zone was observed in all glass-ionomer cement, but an inner, opaque zone was observed in only two of the regular glass-ionomer cements. Extending the time between start of mixing and immersion on water decreased the width of both zones in all cements and markedly lowered the loss of substance from the surface of regular glass-ionomer cements. However, time after mixing had no or only a limited effect on the loss of substance from the light-curing glass-ionomer cement, the zine phosphate cement, or the polycarboxylate cement.

  • PDF

A STUDY ON THE STAINING OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 착색경향에 관한 연구)

  • Lee, Dong-Hoon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • For the purpose of quantifying the staining rendency of light-cured glass ionomer cements and chemical-cured glass ionomer cements, Glass Ionomer specimens were stained with methylene blue and analyzed quantitatively with spectrophotometry. The data was processed and the result was as follows : 1. Chemical-cured glass ionomer cement showed higher color stability than light-cured glass ionomer cement with significance.(P<0.001) 2. In light-cured glass ionomer cement groups, Vitremer showed higher dye concentration of methylene blue than Fuji II LC. 3. In chemical-cured glass ionomer cement groups, Fuji II showed higher dye concentration of methylene blue than Ketac-fil.

  • PDF

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

A STUDY ON THE ADAPTATION OF LIGHT-CURED AND SELF-CURED GLASS-IONOMER CEMENTS TO TOOTH STRUCTURE (광중합형과 자가중합형 글라스 아이오노머 시멘트의 변연 접합성에 관한 연구)

  • Park, Yil-Yoon;Cho, Young-Gon;Hur, Seung-Myun
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.148-158
    • /
    • 1994
  • The purpose of this study was to compare the adaptation to tooth structure of light - cured glass ionomer cement with that of self -cured glass ionomer cement. In this study, class V cavities were prepared on the buccal surfaces of 10 extracted human premolar teeth, and teeth were randomly assigned 2 groups of 5 teeth each. The cavities of self-curing glass ionomer cement group were restored with the Fuji n. and the cavities of lightcuring glass ionomer cement group were restored with the Fuji II LC. The surfaces of glass ionomer cements were applied with All-Bond 2 adhesive, and cured with visible light. The restored teeth were stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then. the roots of the teeth were removed with the tapered fissure bur and the remaining crowns were sectioned occlusogingivally through the center of glass ionomer restorations. Adaptation at tooth-restoration interface was assessed occlusally. axially, and gingivally by scanning electron microscope. The results were as follows : 1. On the occlusal margin, the group of self - curing glass ionomer cement showed closer adaptation to both enamel and dentin than the group of light-curing glass ionomer cement showing 5/lm gap between cement and tooth structure. 2. On the axial wall. the group of light-curing glass ionomer cement showing 5-$7{\mu}m$ gap between cement and dentin showed closer adaptation to dentin than the group of self -curing glass ionomer cement showing 10-$15{\mu}m$ gap between cement and dentin. 3. On the gingival margin, the group of light-curing glass ionomer cement showing 2-$5{\mu}m$ gap between cement and dentin(X 1200) showed closer adaptation to dentin than the group of self-curing glass ionomer cement showing 20pm gap between cement and dentin(X 600). 4. The group of self -curing glass ionomer cement showed closer adaptation on the occlusal margin than on the gingival margin, and the group of light-curing glass ionomer cement showed similar adaptation on both occlusal and gingival margins.

  • PDF

ADAPTATION OF RESIN-MODIFIED GLASS IONOMER CEMENT TO DENTIN (상아질에 대한 광중합형 글라스 아이오노머 시멘트의 접합도)

  • Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.792-800
    • /
    • 1997
  • The purpose of this study was to evaluate the adaptation of self-cured glass ionomer cement and resin-modified glass ionomer cement and polyacid-modified resin composite, which are light-cured giass ionomer cements, to dentin surface. Twelve extracted human maxillary and mandibular molar teeth were used in this study. The entire occlusal dentin surfaces of teeth were exposed with Diamond Wheel Saw and smoothed with sand papers (300, 600, 1200grits). They were randomly assigned into 3 groups according to glass ionomer cements used; Control group- Fuji II, Expeimental group 1 - Fuji II LC, Expeimental group 2 - Dyract. According to the manufacturer's directions, three glass ionomer cements were bonded to exposed dentin surfaces of the tooth crown and cured. Crowns and glass ionomers were trimmed after 24hrs and sectioned horizontally and vertically with diamond saw. The interface of glass ionomer cements and dentin was examined under SEM. The results were as follows : 1. Good adatation between glass ionomer cement and dentin on the horizontal section was showed in control and experimental group 1, but the gap of $20{\mu}m$, which was observed distinct separation between glass ionomer cement and dentin, was showed in experimental group 2. 2. Good adatation between glass ionomer cements and dentin on the vertical section was showed in control and experimental group 1, but the gap of 80-$100{\mu}m$ was showed in experimental group 2. 3. Cohesive fracture within glass ionomer cements in control and experimental group 1 was showed, but no cohesive fracture was showed in experimental group 2.

  • PDF

AN EXPERIMENTAL STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN WITH THE VARIOUS SURFACE TREATMENTS OF LIGHT - CURED GLASS IONOMER CEMENTS (광중합형 Glass Ionomer Cement의 표면처리 방법에 따른 복합레진과의 결합력에 관한 실험적 연구)

  • Yong, Seung-Hee;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.421-430
    • /
    • 1992
  • The purpose of this study was to evaluate the bond strength between the composite resin and light - cured glass ionomer cement base / liners treated by the several methods. The light - cured glass ionomer cement(Vitrebond / Cavalite) were injected into cavites prepared in acrylic plates. One hundred and twenty specimens were uniformly prepared and devided into 3 groups. For the first group, primer was not applied to glass ionomer cement. For the second group, no application of primer was undertaken and light - curing procedure to uncured glass ionomer cement surface which was covered by bonding agent was undertaken. After bonding composite resin to light - cured glass ionomer surface, the specimens, were stored in $37^{\circ}C$, 100% humidity for 1 hour. The following results were obtained : 1. The omission of application of a primer did not produce a significantly poorer bond strength. 2. Light - curing technique to uncured glass ionomer cement which was covered by bonding agent did not produce a significantly poorer bonding strength. 3. The bond strength of Cavalite to composite resin was significantly higher than that of Vitrebond. 4. There was no significant difference between two different types of composite materials(Silux-Plus / Herculite XR) when it was applied to bond to glass ionomer cement.

  • PDF

THE ADAPTIBILITY OF LIGHT-CURED GLASS-IONOMER CEMENTS TO CAVITY WALLS. (와동벽에 대한 광중합형 글래스아이오노머 시멘트의 적합도)

  • Kang, Mi-Sun;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.173-182
    • /
    • 1995
  • The purpose of this study was to evaluate the adaptability of light-cured glass ionomer cement to cavity walls. Class V cavities were prepared on the labial surfaces of extracted bovine incisor teeth. The cavities were restored with Fuji II as self-cured glass ionomer cement and Fuji II LC, Vitremer as light-cured glass ionomer cement. Fluorescent markers (fluoreceine and rhodamin B) were incorperated into liquid and primer for a better image of microscopic observation. Restored teeth were sectioned by longitudinal and labiolingual direction. The adaptability at the tooth-restoration interface was assessed incisally, axially and cervically by confocal scanning laser microscope. Following results were obtained : 1. Chemical-cured glass iomomer cement restoration showed close adaptation on the all of the cavity walls, but, cracks formed within the cement. 2. Light-cured glass ionomer cement restoration was well adapted to the cavity walls, but showed crack in the cement adjacent to axial dentinal wall. 3. There' was no significant difference in adaptability between two light-cured glass ionomer cement restorations.

  • PDF

A COMPARATIVE STUDY ON THE APICAL LEAKAGE OF VARIOUS RETROFILLING MATERIALS (Retrofilling시 수종충전재료의 변연누출에 관한 연구)

  • Ohn, Yeong-Suck;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.118-125
    • /
    • 1991
  • Eighty - eight recently extracted teeth were used to evaluate the leakage characteristics of the following retrofilling materials; amalgam, zinc oxide eugenol cement, glass - ionomer cement, and cermet glass - ionomer cement. Root canals were prepared with step - back method and obturated with gutta percha and zinc oxide eugenol sealer. Root apex were resected 2 mm from apex and class I cavities were prepared with 2 mm or 4 mm depth. The cavities were filled with above materials. After application of varnish on all surface except resected surface, the roots were placed in 1 % methylene blue solution for 6 days. After longitudinal polishing to expose cental parts of filled materials, penetrated depths of dye were measured. The results were as follws. 1. As retrofilling material, glass ionomer cement filling groups showed less leakage than the other groups except zinc oxide eugenol cement filling group(p<0.01). 2. Amalgam filling groups had greater leakage than zinc oxide eugenol cement filling group(p<0.01). 3. 4 mm depth of retrofilled cavity had no effect on leakage characteristics compared with 2 mm depth cavity(p>0.05). 4. Glass ionomer cement and cermet glass ionomer cement filling groups showed less apical leakage than amalgam filling groups. But there was no statistical significance(p>0.05). 5. There was no difference in apical leakage between glass ionomer cement filling groups and cermet glass ionomer cement filling groups(p>0.05).

  • PDF

EXPERIMENTAL STUDIES ON THE SURFACE ROUGHNESS OF GLASS IONOMER CEMENT RESTORATIONS (Glass Ionomer Cement 수복물(修復物)의 표면거칠기에 관한 실험적 연구)

  • Kim, Kwang-Soon;Lee, Seung-Jong;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.166-180
    • /
    • 1992
  • One disadvantage of Glass Ionomer Cement Restoration is the difficulty in polishing. To find the appropriate polishing method, we polished the surface of Glass Ionomer Cement Restorations by 11 combination methods serially using disks shared with large-small particles and evaluated the polishing process in terms of surface roughness, surface roughness curve, and SEM findings. In addition, a visible light curing type bonding material was applied to evaluate the possible improvement in surface properties. The following results were obtained. 1. The disk surface of Glass Ionomer Cement was polished serially by disks with superfine particles, but it didn't become smooth. 2. The surface of Microfilled Composite resin became smoother as using a disk with finer particles. 3. When a visible light curing type bonding material was applied in finishing process, the surface of Glass Ionomer Cement became smooth as much as the applied matrix.

  • PDF